• NEW! FREE Beat The GMAT Quizzes
    NEW! FREE Beat The GMAT Quizzes
    NEW! FREE Beat The GMAT Quizzes
    Hundreds of Questions Highly Detailed Reporting Expert Explanations TAKE A FREE GMAT QUIZ
  • 7 CATs FREE!
    If you earn 100 Forum Points

    Engage in the Beat The GMAT forums to earn
    100 points for $49 worth of Veritas practice GMATs FREE

    Veritas Prep
    VERITAS PRACTICE GMAT EXAMS
    Earn 10 Points Per Post
    Earn 10 Points Per Thanks
    Earn 10 Points Per Upvote
    REDEEM NOW

Three friends Alan, Roger and Peter

This topic has 2 expert replies and 1 member reply

Three friends Alan, Roger and Peter

Post
Three friends Alan, Roger and Peter attempt to answer a question on an exam. Alan randomly guesses the answer, giving him a 1/5 probability of guessing correctly. Roger cheats by looking at the paper of the student in front of him, giving him a 2/3 probability of answering correctly. And Peter dutifully performs the calculations, then marks the answer, giving him a 5/6 probability of a correct answer. What is the probability that the question is answered correctly, but not via cheating?

A 1/18
B 1/9
C 23/90
D 5/18
E 13/45

Can some experts help me find the solution in this?

OA E

  • +1 Upvote Post
  • Quote
  • Flag

GMAT/MBA Expert

Legendary Member
Joined
14 Jan 2015
Posted:
2667 messages
Followed by:
122 members
Upvotes:
1153
GMAT Score:
770
Top Reply
Post
lheiannie07 wrote:
Three friends Alan, Roger and Peter attempt to answer a question on an exam. Alan randomly guesses the answer, giving him a 1/5 probability of guessing correctly. Roger cheats by looking at the paper of the student in front of him, giving him a 2/3 probability of answering correctly. And Peter dutifully performs the calculations, then marks the answer, giving him a 5/6 probability of a correct answer. What is the probability that the question is answered correctly, but not via cheating?

A 1/18
B 1/9
C 23/90
D 5/18
E 13/45

Can some experts help me find the solution in this?

OA E
This question could use some cleaning up. It seems to be asking what the probability is that at least one of the friends answers the question correctly, so long as that friend is not Roger, the cheater. (It wouldn't make much sense to assume that the friends are working together and answering the problem as a cohesive unit.)

If so, this could happen one of three ways:

1) Alan and Peter both answer correctly, and Roger is wrong.
2) Alan answers correctly, and Peter and Roger are wrong
3) Peter answers correctly, and Alan and Roger are wrong

Scenario 1: P(Alan correct) = 1/5; P(Peter correct)= 5/6; P(Roger wrong) = 1/3 --> 1/5 *5/6 * 1/3 = 1/18
Scenario 2: P(Alan correct) = 1/5; P(Peter wrong)= 1/6; P(Roger wrong) = 1/3 --> 1/5 *1/6 * 1/3 = 1/90
Scenario 3: P(Peter correct) = 5/6; P(Alan wrong)= 4/5; P(Roger wrong) = 1/3 --> 5/6 * 4/5 * 1/3 = 2/9

Add the scenarios together: 1/18 + 1/90 + 2/9 = 5/90 + 1/90 + 20/90 = 26/90 = 13/45. The answer is E

_________________
Veritas Prep | GMAT Instructor

Veritas Prep Reviews
Save $100 off any live Veritas Prep GMAT Course

  • +1 Upvote Post
  • Quote
  • Flag
Enroll in a Veritas Prep GMAT class completely for FREE. Wondering if a GMAT course is right for you? Attend the first class session of an actual GMAT course, either in-person or live online, and see for yourself why so many students choose to work with Veritas Prep. Find a class now!
Top Reply
Post
lheiannie07 wrote:
Three friends Alan, Roger and Peter attempt to answer a question on an exam. Alan randomly guesses the answer, giving him a 1/5 probability of guessing correctly. Roger cheats by looking at the paper of the student in front of him, giving him a 2/3 probability of answering correctly. And Peter dutifully performs the calculations, then marks the answer, giving him a 5/6 probability of a correct answer. What is the probability that the question is answered correctly, but not via cheating?

A 1/18
B 1/9
C 23/90
D 5/18
E 13/45
Let A, R, P = the probability that Alan, Roger and Peter correctly answer the question, respectively. Then the probability the question is answered correctly but not by cheating is the probability that Roger (the cheater) answers it incorrectly but either Alan or Peter or both answer it correctly.

P(A, not R, P) = 1/5 x 1/3 x 5/6 = 5/90
P(A, not R, not P) = 1/5 x 1/3 x 1/6 = 1/90
P(not A, not R, P) = 4/5 x 1/3 x 5/6= 20/90

Thus the probability is 5/90 + 1/90 + 20/90 = 26/90 = 13/45.

Answer: E

_________________

Scott Woodbury-Stewart
Founder and CEO
scott@targettestprep.com



See why Target Test Prep is rated 5 out of 5 stars on BEAT the GMAT. Read our reviews

  • +1 Upvote Post
  • Quote
  • Flag
Post
DavidG@VeritasPrep wrote:
lheiannie07 wrote:
Three friends Alan, Roger and Peter attempt to answer a question on an exam. Alan randomly guesses the answer, giving him a 1/5 probability of guessing correctly. Roger cheats by looking at the paper of the student in front of him, giving him a 2/3 probability of answering correctly. And Peter dutifully performs the calculations, then marks the answer, giving him a 5/6 probability of a correct answer. What is the probability that the question is answered correctly, but not via cheating?

A 1/18
B 1/9
C 23/90
D 5/18
E 13/45

Can some experts help me find the solution in this?

OA E
This question could use some cleaning up. It seems to be asking what the probability is that at least one of the friends answers the question correctly, so long as that friend is not Roger, the cheater. (It wouldn't make much sense to assume that the friends are working together and answering the problem as a cohesive unit.)

If so, this could happen one of three ways:

1) Alan and Peter both answer correctly, and Roger is wrong.
2) Alan answers correctly, and Peter and Roger are wrong
3) Peter answers correctly, and Alan and Roger are wrong

Scenario 1: P(Alan correct) = 1/5; P(Peter correct)= 5/6; P(Roger wrong) = 1/3 --> 1/5 *5/6 * 1/3 = 1/18
Scenario 2: P(Alan correct) = 1/5; P(Peter wrong)= 1/6; P(Roger wrong) = 1/3 --> 1/5 *1/6 * 1/3 = 1/90
Scenario 3: P(Peter correct) = 5/6; P(Alan wrong)= 4/5; P(Roger wrong) = 1/3 --> 5/6 * 4/5 * 1/3 = 2/9

Add the scenarios together: 1/18 + 1/90 + 2/9 = 5/90 + 1/90 + 20/90 = 26/90 = 13/45. The answer is E
Thanks a lot!

  • +1 Upvote Post
  • Quote
  • Flag
  • Veritas Prep
    Free Veritas GMAT Class
    Experience Lesson 1 Live Free

    Available with Beat the GMAT members only code

    MORE DETAILS
    Veritas Prep
  • Kaplan Test Prep
    Free Practice Test & Review
    How would you score if you took the GMAT

    Available with Beat the GMAT members only code

    MORE DETAILS
    Kaplan Test Prep
  • Economist Test Prep
    Free Trial & Practice Exam
    BEAT THE GMAT EXCLUSIVE

    Available with Beat the GMAT members only code

    MORE DETAILS
    Economist Test Prep
  • Magoosh
    Magoosh
    Study with Magoosh GMAT prep

    Available with Beat the GMAT members only code

    MORE DETAILS
    Magoosh
  • Target Test Prep
    5-Day Free Trial
    5-day free, full-access trial TTP Quant

    Available with Beat the GMAT members only code

    MORE DETAILS
    Target Test Prep
  • Varsity Tutors
    Award-winning private GMAT tutoring
    Register now and save up to $200

    Available with Beat the GMAT members only code

    MORE DETAILS
    Varsity Tutors
  • e-gmat Exclusive Offer
    Get 300+ Practice Questions
    25 Video lessons and 6 Webinars for FREE

    Available with Beat the GMAT members only code

    MORE DETAILS
    e-gmat Exclusive Offer
  • The Princeton Review
    FREE GMAT Exam
    Know how you'd score today for $0

    Available with Beat the GMAT members only code

    MORE DETAILS
    The Princeton Review
  • EMPOWERgmat Slider
    1 Hour Free
    BEAT THE GMAT EXCLUSIVE

    Available with Beat the GMAT members only code

    MORE DETAILS
    EMPOWERgmat Slider
  • PrepScholar GMAT
    5 Day FREE Trial
    Study Smarter, Not Harder

    Available with Beat the GMAT members only code

    MORE DETAILS
    PrepScholar GMAT

Top First Responders*

1 Ian Stewart 50 first replies
2 Brent@GMATPrepNow 37 first replies
3 Jay@ManhattanReview 33 first replies
4 GMATGuruNY 29 first replies
5 ceilidh.erickson 14 first replies
* Only counts replies to topics started in last 30 days
See More Top Beat The GMAT Members

Most Active Experts

1 image description Scott@TargetTestPrep

Target Test Prep

209 posts
2 image description Max@Math Revolution

Math Revolution

92 posts
3 image description Brent@GMATPrepNow

GMAT Prep Now Teacher

79 posts
4 image description Ian Stewart

GMATiX Teacher

57 posts
5 image description GMATGuruNY

The Princeton Review Teacher

49 posts
See More Top Beat The GMAT Experts