• 7 CATs FREE!
    If you earn 100 Forum Points

    Engage in the Beat The GMAT forums to earn
    100 points for $49 worth of Veritas practice GMATs FREE

    Veritas Prep
    VERITAS PRACTICE GMAT EXAMS
    Earn 10 Points Per Post
    Earn 10 Points Per Thanks
    Earn 10 Points Per Upvote
    REDEEM NOW

Seating Arrangement

This topic has expert replies
Master | Next Rank: 500 Posts
Posts: 423
Joined: 11 Jun 2010
Location: Seattle, WA
Thanked: 86 times
Followed by:2 members

Seating Arrangement

by srcc25anu » Thu Apr 18, 2013 12:42 pm
There are six different models that are to appear in a fashion show. Two are from Europe, two are from South America, and two are from North America. If all the models from the same continent are to stand next to each other, how many ways can the fashion show organizer arrange the models?

A) 48
B) 64
C) 24
D) 8
E) 72

OA: A

Newbie | Next Rank: 10 Posts
Posts: 5
Joined: 16 Apr 2013
Location: New York
Thanked: 2 times
GMAT Score:770

by BenMiller » Thu Apr 18, 2013 1:19 pm
Here we have two characteristics that can be separated. First, we have six ways to arrange the continents (NA, SA, Eur).

For each of these six configurations, there are two ways to sort the models (eg NA-1, NA-2) for each of 3 continents.

So we have 6 continent orders * (2^3) = 6 * 8 = 48

An analogous problem would be:

There are 3 different coins. How many different piles can you make (using both order of the coins and heads/tails positioning)?

Junior | Next Rank: 30 Posts
Posts: 11
Joined: 16 Apr 2013

by chaithu_bunny » Fri Apr 19, 2013 4:33 am
srcc25anu wrote:There are six different models that are to appear in a fashion show. Two are from Europe, two are from South America, and two are from North America. If all the models from the same continent are to stand next to each other, how many ways can the fashion show organizer arrange the models?

A) 48
B) 64
C) 24
D) 8
E) 72

OA: A
Firstly, Lets forget about the number of models for now[Since we need to group the models from the same continent]. We have representations from 3 continents[SA, NA, EU]. These 3 representations can be arranged in 3! = 6 Ways.

Now each representation[SA/NA/EU] has two models, who can be arranged in 2! = 2 Ways.

So, in sum, the total number of ways the models can be arranged: 3!*2!*2!*2! = 6*2*2*2 = 48 ways.

Hence the correct answer is [spoiler]No Points for guessing now... :lol: [/spoiler]

Hope this helps... :)

GMAT/MBA Expert

User avatar
GMAT Instructor
Posts: 13851
Joined: 08 Dec 2008
Location: Vancouver, BC
Thanked: 5254 times
Followed by:1257 members
GMAT Score:770

by Brent@GMATPrepNow » Fri Apr 19, 2013 6:58 am
srcc25anu wrote:There are six different models that are to appear in a fashion show. Two are from Europe, two are from South America, and two are from North America. If all the models from the same continent are to stand next to each other, how many ways can the fashion show organizer arrange the models?

A) 48
B) 64
C) 24
D) 8
E) 72

OA: A
Here's another approach.

Take the task of arranging the models and break it into stages.

Stage 1: Select a model to stand in position #1
There are 6 models to choose from, so we can accomplish this stage in 6 ways.

Stage 2: Select a model to stand in position #2
Since models from the same country must stand together, there's only 1 model who can stand in position #2
So, we can complete this stage in 1 way

Stage 3: Select a model to stand in position #3
There are 4 models remaining, so we can accomplish this stage in 4 ways.

Stage 4: Select a model to stand in position #4
Since models from the same country must stand together, there's only 1 way to complete this stage

Stage 5: Select a model to stand in position #5
There are 2 models remaining, so we can accomplish this stage in 2 ways.

Stage 6: Select a model to stand in position #6
There is only 1 model remaining, so we can accomplish this stage in 1 way.

By the Fundamental Counting Principle (FCP) we can complete all 6 stages (and thus arrange all 6 models) in (6)(1)(4)(1)(2)(1) ways ([spoiler]= 48 ways[/spoiler])

Answer is A

Cheers,
Brent

Aside: For more information about the FCP, we have a free video on the subject: https://www.gmatprepnow.com/module/gmat-counting?id=775
Brent Hanneson - Creator of GMATPrepNow.com
Use my video course along with Beat The GMAT's free 60-Day Study Guide
Image
Watch these video reviews of my course
And check out these free resources