On a game show, there are five boxes, each of which contains

This topic has expert replies
Legendary Member
Posts: 2226
Joined: Sun Oct 29, 2017 2:04 pm
Followed by:6 members

Timer

00:00

Your Answer

A

B

C

D

E

Global Stats

On a game show, there are five boxes, each of which contains a prize. Each box has two locks on it, and to open the box and win the prize a player must have both keys to that box. All ten keys are placed in a bowl and a player will draw four keys. If each lock/key combination is unique, what is the probability that a particular player will win at least one prize by drawing four keys?

A. 2/5
B. 11/21
C. 13/21
D. 2/3
E. 16/21

The OA is C.

Source: Veritas Prep

User avatar
GMAT Instructor
Posts: 1449
Joined: Sat Oct 09, 2010 2:16 pm
Thanked: 59 times
Followed by:33 members

by fskilnik@GMATH » Tue Aug 28, 2018 10:32 am
swerve wrote:On a game show, there are five boxes, each of which contains a prize. Each box has two locks on it, and to open the box and win the prize a player must have both keys to that box. All ten keys are placed in a bowl and a player will draw four keys. If each lock/key combination is unique, what is the probability that a particular player will win at least one prize by drawing four keys?

A. 2/5
B. 11/21
C. 13/21
D. 2/3
E. 16/21
Beautiful problem.

Let´s do by complementarity, i.e., we start by finding the probability of choosing 4 keys in such a way that no locks will open.

This occurs if, and only if, the player gets exactly one key from each of 4 locks among the 5 locks available.

First Step: there are C(5,4) = C(5,1) = 5 ways of choosing the locks the player will have exactly one key from.

Second Step: the first step concluded, the player has 2*2*2*2 ways of choosing one key of each pair of keys (pairs of keys chosen in the previous step).

By the multiplicative principle, the "not-wanted" probability is (5*2^4) over C(10,4) = 8/21 ,

because C(10,4) is the total number of equiprobable ways of choosing 4 keys among the 10 available without any restriction.

Our focus is 1 - 8/21 = 13/21.

The above follows the notations and rationale taught in the GMATH method.
Fabio Skilnik :: GMATH method creator ( Math for the GMAT)
English-speakers :: https://www.gmath.net
Portuguese-speakers :: https://www.gmath.com.br

Master | Next Rank: 500 Posts
Posts: 415
Joined: Thu Oct 15, 2009 11:52 am
Thanked: 27 times

by regor60 » Wed Aug 29, 2018 4:54 am
Best way to do "at least one" problems is to do 1 - "none", meaning here that all 4 keys chosen from the ten are for four different boxes

Pick a key, probability 1 :). There are now 9 keys remaining, 8 of which don't pair up with the first key,

so the probability of picking two keys that don't match is 1 x 8/9

There are now 8 keys remaining. Two of those keys match with the first two chosen, so there are 6 nonmatching keys

so the probability of picking three keys that don't match is 1 x 8/9 x 6/8

There are now 7 keys remaining, three of which can be paired with the first three chosen, so 4 nonmatching keys remaining

so the probability of picking four keys that don't match becomes 1 x 8/9 x 6/8 x 4/7 = 24/63

To compute probability of at least one key matching, subtract this result from 1: 1 = 63/63. 63/63 - 24/63 =39/63 = [spoiler]13/21, C[/spoiler]

GMAT/MBA Expert

User avatar
GMAT Instructor
Posts: 1462
Joined: Thu Apr 09, 2015 9:34 am
Location: New York, NY
Thanked: 39 times
Followed by:22 members

by Jeff@TargetTestPrep » Thu Aug 30, 2018 4:59 pm
swerve wrote:On a game show, there are five boxes, each of which contains a prize. Each box has two locks on it, and to open the box and win the prize a player must have both keys to that box. All ten keys are placed in a bowl and a player will draw four keys. If each lock/key combination is unique, what is the probability that a particular player will win at least one prize by drawing four keys?

A. 2/5
B. 11/21
C. 13/21
D. 2/3
E. 16/21
To win at least one prize, he must open either one box or both boxes.

Let's find the probability he can open both boxes first. To open 2 boxes, he must have all 4 keys to the 2 boxes he has chosen. The number of ways of picking 4 keys from 10 is 10C4 = (10 x 9 x 8 x 7)/(4 x 3 x 2) = 10 x 3 x 7 = 210, and only 4C4 = 1 set of 4 keys are the right keys for the 2 boxes he has chosen; thus, the probability of choosing the right set of keys is 1/210. However, there are 5C2 = (5 x 4)/2 = 10 ways to choose 2 boxes from 5, and each of these 10 selections has 1/210 chance of opening the 2 boxes; therefore, the probability of opening 2 boxes is actually 10 x 1/210 = 1/21.

Of course, he can also open only 1 box. To do that, he must have the 2 keys to that box. Since he has 4 keys, the number of ways the 4 keys contain the 2 keys he needs is 4C2 = (4 x 3)/2 = 6, so the probability he can open 1 box is 6/210. However, it's possible that the 2 keys can open either one of the two boxes he has chosen and there are 10 ways to choose 2 boxes from 5 (as mentioned above), so the probability of opening exactly 1 box is actually 2 x 10 x 6/210 = 120/210 = 12/21.

Therefore, the probability of winning at least one prize is

1/21 + 12/21 = 13/21

Alternate Solution:

We will use the formula:

P(opening at least one box) = 1 - P(opening no boxes)

Thus, we need to calculate the probability that none of the boxes can be opened using the four selected keys.

After the first key is selected, there is a 8/9 probability that the second key is not the matching pair of the first key.

After two keys are selected, there are 2 keys among the remaining 8 keys that form a pair with one of the already selected keys, which means any of the 8 - 2 = 6 keys will not form a pair with one of the previously selected keys. Thus, the probability that the third selected key does not form a pair with the previous two keys is 6/8 = 3/4.

Finally, after three keys are selected, there are 3 keys among the remaining 7 keys that form a pair with one of the already selected keys, which means any of the 7 - 3 = 4 keys will not form a pair with one of the previously selected keys. Thus, the probability that the fourth selected key does not form a pair with the previous three keys is 4/7.

In total, the probability that the four keys do not contain a pair which will open a box is 8/9 x 3/4 x 4/7 = 8/21. Therefore, the probability that the contestant will win at least one prize is 1 - 8/21 = 13/21.

Answer: C

Jeffrey Miller
Head of GMAT Instruction
[email protected]

Image

See why Target Test Prep is rated 5 out of 5 stars on BEAT the GMAT. Read our reviews