Hi everyone. I'm still running into trouble with exponent problems. Here is an exponent problem from the online CAT at MBA.com.
2+2+2^2+2^3+2^4+2^5+2^6+2^7+2^8
a)2^9
b)2^10
c)2^16
d)2^35
e)2^37
It's sort of hard to look at when the exponents don't display correctly. I suspected that the solution might involve factoring  but alas, that was about as far as I got. The correct answer is A (I guessed D). Any thoughts on a good approach for the problem?
Thank you in advance!
mba.com cat question: 2+2+2^2....
This topic has expert replies
 [email protected]
 GMAT Instructor
 Posts: 1031
 Joined: 03 Jul 2008
 Location: Malibu, CA
 Thanked: 716 times
 Followed by:255 members
 GMAT Score:750
Hey saritalr:
Great question...I love this one! I actually wrote about this a while back on our blog:
https://www.veritasprep.com/blog/2010/09 ... manytwos/
Here's the text  and you were exactly right on about factoring! It just takes a few steps:
Great question...I love this one! I actually wrote about this a while back on our blog:
https://www.veritasprep.com/blog/2010/09 ... manytwos/
Here's the text  and you were exactly right on about factoring! It just takes a few steps:
Veritas Prep Blog  GMAT Tip of the Week: Too Many Twos
This question brings up an important point about exponents  we only have a few "core competencies" when it comes to performing with algebra, and those are:
Multiplying/dividing exponents with common bases
Finding patterns (units digits, relationships between adding/subtracting common terms, etc.)
Setting common bases equal to equate exponents
Outside of that, there's very little that we can do without the use of a calculator. So, in order to take advantage of what we do well, we should find ways when we see exponents to:
Find common bases
Multiply (using factorization to turn addition/subtraction into multiplication)
Here, we're asked to add several terms together...that's not something that we do well with exponents. However, by blending our abilities to factor terms (to get to multiplication) and to see patterns, we can attack this question relatively efficiently:
2 + 2 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7 + 2^8
Combine the 2s to be 4, or 2^2, and you have:
2^2 + 2^2 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7 + 2^8
Now we can add them together, and we have 2(2^2), or 2^3, simplifying the entire statement to:
2^3 + 2^3 + 2^4 + 2^5 + 2^6 + 2^7 + 2^8
Notice that we'll be able to combine two more terms, the two 2^3 terms, to be 2(2^3) or 2^4, leaving:
2^4 + 2^4 + 2^5 + 2^6 + 2^7 + 2^8
By now hopefully you've seen a pattern (patterns come up frequently in exponent questions)  the first two terms will add to the third, and then adding those will add to the fourth:
2^4 + 2^4 (the first two) = 2^5 (so now we have two of the third term):
2^5 + 2^5 + 2^6 + 2^7 + 2^8
Do that again and we'll have:
2^6 + 2^6 + 2^7 + 2^8
If we repeat the pattern, we'll end up with:
2^8 + 2^8 = 2(2^8) = 2^9. Therefore, the correct answer is A.
When approaching exponent problems, keep your core competencies in mind: factor, multiply, find common bases, and look for patterns. These strategies will help you turn complicated problems into efficient solutions.
Brian Galvin
GMAT Instructor
Chief Academic Officer
Veritas Prep
Looking for GMAT practice questions? Try out the Veritas Prep Question Bank. Learn More.
GMAT Instructor
Chief Academic Officer
Veritas Prep
Looking for GMAT practice questions? Try out the Veritas Prep Question Bank. Learn More.
GMAT/MBA Expert
 [email protected]
 GMAT Instructor
 Posts: 1179
 Joined: 11 Apr 2010
 Location: Milpitas, CA
 Thanked: 447 times
 Followed by:88 members
One more method:
Let S = 2+2+2^2+2^3+2^4+2^5+2^6+2^7+2^8.
So S  2 = 2+2^2+2^3+2^4+2^5+2^6+2^7+2^8
Now 2*(S2) = 2^2+2^3+2^4+2^5+2^6+2^7+2^8 + 2^9.
So 2*(S2)  (S2) = (2^2+2^3+2^4+2^5+2^6+2^7+2^8 + 2^9)  (2+2^2+2^3+2^4+2^5+2^6+2^7+2^8)
= 2^9  2.
Or S2 = 2^9  2
Or S = 2^9.
The correct answer is a).
Let S = 2+2+2^2+2^3+2^4+2^5+2^6+2^7+2^8.
So S  2 = 2+2^2+2^3+2^4+2^5+2^6+2^7+2^8
Now 2*(S2) = 2^2+2^3+2^4+2^5+2^6+2^7+2^8 + 2^9.
So 2*(S2)  (S2) = (2^2+2^3+2^4+2^5+2^6+2^7+2^8 + 2^9)  (2+2^2+2^3+2^4+2^5+2^6+2^7+2^8)
= 2^9  2.
Or S2 = 2^9  2
Or S = 2^9.
The correct answer is a).
Rahul Lakhani
Quant Expert
Gurome, Inc.
https://www.GuroMe.com
On MBA sabbatical (at ISB) for 201112  will stay active as time permits
18005664043 (USA)
+9199201 32411 (India)
Quant Expert
Gurome, Inc.
https://www.GuroMe.com
On MBA sabbatical (at ISB) for 201112  will stay active as time permits
18005664043 (USA)
+9199201 32411 (India)

 Junior  Next Rank: 30 Posts
 Posts: 23
 Joined: 27 Jul 2010
 Location: Washington, DC
 GMAT Score:700
Thanks to both of you. Brian  I believe I understand your explanation, combining the like terms one at a time.
Rahul  I'm not as clear on the explanation you posted. I see that in the firs step you subtracted 2 from both sides. But you lost me on the 2nd and 3rd step. It looks like you multiplied by two? then?
Thanks,
Sarah
Rahul  I'm not as clear on the explanation you posted. I see that in the firs step you subtracted 2 from both sides. But you lost me on the 2nd and 3rd step. It looks like you multiplied by two? then?
Thanks,
Sarah
GMAT/MBA Expert
 [email protected]
 GMAT Instructor
 Posts: 1179
 Joined: 11 Apr 2010
 Location: Milpitas, CA
 Thanked: 447 times
 Followed by:88 members
Rahul  I'm not as clear on the explanation you posted. I see that in the firs step you subtracted 2 from both sides. But you lost me on the 2nd and 3rd step. It looks like you multiplied by two? then?
Yes, I have multiplied by 2.
Now 2*(S2) = 2^2+2^3+2^4+2^5+2^6+2^7+2^8 + 2^9. .................(1)
(S2) = 2+2^2+2^3+2^4+2^5+2^6+2^7+2^8.............(2).
If you subtract (2) from (1) , all terms will cancel except for 2^9  2.
So Left hand side is 2*(S2)  (S2) = (S2) and right hand side is 2^9  2.
Or S  2 = 2^9  2.
Or S = 2^9.
Hope its clear.
Rahul Lakhani
Quant Expert
Gurome, Inc.
https://www.GuroMe.com
On MBA sabbatical (at ISB) for 201112  will stay active as time permits
18005664043 (USA)
+9199201 32411 (India)
Quant Expert
Gurome, Inc.
https://www.GuroMe.com
On MBA sabbatical (at ISB) for 201112  will stay active as time permits
18005664043 (USA)
+9199201 32411 (India)