• 7 CATs FREE!
    If you earn 100 Forum Points

    Engage in the Beat The GMAT forums to earn
    100 points for $49 worth of Veritas practice GMATs FREE

    Veritas Prep
    VERITAS PRACTICE GMAT EXAMS
    Earn 10 Points Per Post
    Earn 10 Points Per Thanks
    Earn 10 Points Per Upvote
    REDEEM NOW

How many prime numbers exist between 200 and 220?

This topic has expert replies
Moderator
Posts: 466
Joined: 29 Oct 2017
Thanked: 1 times
Followed by:3 members
How many prime numbers exist between 200 and 220?

(A) None
(B) One
(C) Two
(D) Three
(E) Four

The OA is B.

Experts, what is the best approach that I could use to solve this PS question? May you give me some help?

Legendary Member
Posts: 860
Joined: 07 Sep 2017
Thanked: 6 times
Followed by:3 members

by Vincen » Fri Mar 16, 2018 4:51 am
M7MBA wrote:How many prime numbers exist between 200 and 220?

(A) None
(B) One
(C) Two
(D) Three
(E) Four

The OA is B.

Experts, what is the best approach that I could use to solve this PS question? May you give me some help?
Hello M7MBA.

I would solve it like this:

We don't have to check the even numbers.

Now, from the odd numbers:

201, 207, 210, 213, 219 are divisible by 3 (because the sum of their digits is divisible by 3).

205, 215 are divisible by 5.

Hence, we have to check just the following numbers: 203, 209, 211 and 217. Now,

203 = 7*29 (NOT PRIME).
209 = 11*19 (NOT PRIME).
211 = PRIME.
217 = 7*31 (NOT PRIME).

Hence the correct answer is the option B.

One rule that can be useful is: if we want to know if x is a prime number, we have to divide it by all the primes between 2 and $$\sqrt{x}.$$ Since $$\sqrt{220}\approx14.8$$ then we have to check only by 2, 3, 5, 7, 11 and 13.

User avatar
Legendary Member
Posts: 2666
Joined: 14 Jan 2015
Location: Boston, MA
Thanked: 1153 times
Followed by:125 members
GMAT Score:770

by DavidG@VeritasPrep » Fri Mar 16, 2018 7:29 am
Vincen wrote:
M7MBA wrote:How many prime numbers exist between 200 and 220?

(A) None
(B) One
(C) Two
(D) Three
(E) Four

The OA is B.

Experts, what is the best approach that I could use to solve this PS question? May you give me some help?
Hello M7MBA.

I would solve it like this:

We don't have to check the even numbers.

Now, from the odd numbers:

201, 207, 210, 213, 219 are divisible by 3 (because the sum of their digits is divisible by 3).

205, 215 are divisible by 5.

Hence, we have to check just the following numbers: 203, 209, 211 and 217. Now,

203 = 7*29 (NOT PRIME).
209 = 11*19 (NOT PRIME).
211 = PRIME.
217 = 7*31 (NOT PRIME).

Hence the correct answer is the option B.

One rule that can be useful is: if we want to know if x is a prime number, we have to divide it by all the primes between 2 and $$\sqrt{x}.$$ Since $$\sqrt{220}\approx14.8$$ then we have to check only by 2, 3, 5, 7, 11 and 13.
Vincen has an excellent explanation here. The one thing I'll add is that if you find it difficult to see that 209 is divisible by 11, you can start with a number in the neighborhood that we know is divisible by 11, such as 220, and extrapolate. If 220 = 11*20, then 209, or 220 - 11, would contain one fewer 11.
Veritas Prep | GMAT Instructor

Veritas Prep Reviews
Save $100 off any live Veritas Prep GMAT Course

GMAT/MBA Expert

User avatar
GMAT Instructor
Posts: 4430
Joined: 25 Apr 2015
Location: Los Angeles, CA
Thanked: 43 times
Followed by:21 members

by Scott@TargetTestPrep » Fri May 24, 2019 3:12 pm
M7MBA wrote:How many prime numbers exist between 200 and 220?

(A) None
(B) One
(C) Two
(D) Three
(E) Four

The OA is B.
First, we can omit all the even numbers (since they are divisible by 2) and all the odd numbers ending in 5 (since they are divisible by 5). So we are left with 201, 203, 207, 209, 211, 213, 217 and 219. We can omit 201, 207, 213 and 219 also since all of these numbers are divisible by 3 (notice that the sum of their digits is divisible by 3). So we only need to consider 203, 209, 211 and 217.

203/7 = 29 → So 203 is not a prime.

209/7 = 29 R 6, 209/11 = 19 → So 209 is not a prime.

211/7 = 30 R 1, 211/11 = 19 R 2, 211/13 = 16 R 3, 211/17 = 12 R 7 → So 211 is a prime.

217/7 = 31.→ So 217 is not a prime.

Therefore, there is only 1 prime number between 200 and 220.

Answer: B

Scott Woodbury-Stewart
Founder and CEO
scott@targettestprep.com

Image

See why Target Test Prep is rated 5 out of 5 stars on BEAT the GMAT. Read our reviews

ImageImage