• PrepScholar GMAT
    5 Day FREE Trial
    Study Smarter, Not Harder

    Available with Beat the GMAT members only code

    MORE DETAILS
    PrepScholar GMAT
  • Economist Test Prep
    Free Trial & Practice Exam
    BEAT THE GMAT EXCLUSIVE

    Available with Beat the GMAT members only code

    MORE DETAILS
    Economist Test Prep
  • Veritas Prep
    Free Veritas GMAT Class
    Experience Lesson 1 Live Free

    Available with Beat the GMAT members only code

    MORE DETAILS
    Veritas Prep
  • Target Test Prep
    5-Day Free Trial
    5-day free, full-access trial TTP Quant

    Available with Beat the GMAT members only code

    MORE DETAILS
    Target Test Prep
  • Kaplan Test Prep
    Free Practice Test & Review
    How would you score if you took the GMAT

    Available with Beat the GMAT members only code

    MORE DETAILS
    Kaplan Test Prep
  • The Princeton Review
    FREE GMAT Exam
    Know how you'd score today for $0

    Available with Beat the GMAT members only code

    MORE DETAILS
    The Princeton Review
  • Varsity Tutors
    Award-winning private GMAT tutoring
    Register now and save up to $200

    Available with Beat the GMAT members only code

    MORE DETAILS
    Varsity Tutors
  • e-gmat Exclusive Offer
    Get 300+ Practice Questions
    25 Video lessons and 6 Webinars for FREE

    Available with Beat the GMAT members only code

    MORE DETAILS
    e-gmat Exclusive Offer
  • EMPOWERgmat Slider
    1 Hour Free
    BEAT THE GMAT EXCLUSIVE

    Available with Beat the GMAT members only code

    MORE DETAILS
    EMPOWERgmat Slider
  • Magoosh
    Magoosh
    Study with Magoosh GMAT prep

    Available with Beat the GMAT members only code

    MORE DETAILS
    Magoosh

How do you solve this!

This topic has 3 expert replies and 2 member replies
AkiB Junior | Next Rank: 30 Posts Default Avatar
Joined
27 Apr 2013
Posted:
16 messages

How do you solve this!

Post Tue Jun 24, 2014 11:22 am
List S consists of 10 consecutive odd integers, and list T consists of 5 consecutive even integers. If the least integer in S is 7 more than the least integer in T, how much greater is the average (arithmetic mean) of the integers in S than the average of the integers in T?

a) 2
b) 7
c) 8
d) 12
e) 22

OA D

  • +1 Upvote Post
  • Quote
  • Flag

GMAT/MBA Expert

Post Tue Jun 24, 2014 11:39 am
Hi AkiB,

This question can be solved by using Number Property Rules or by TESTing VALUES:

Here's how TESTing VALUES works:

List S: 10 consecutive ODD integers
List T: 5 consecutive EVEN integers
The least integer is S is 7 more than the least integer in T.

Let's say that….
T = {2, 4, 6, 8, 10}
Since the least integers in S is 7 MORE than the least integer in T…
S = {9, 11, 13, 15, 17, 19, 21, 23, 25, 27}

The average of T = 6
The average of S = 18

So, the average of S is 18 - 6 = 12 more than the average of T.

Final Answer: D

GMAT assassins aren't born, they're made,
Rich

_________________
Contact Rich at Rich.C@empowergmat.com

  • +1 Upvote Post
  • Quote
  • Flag

GMAT/MBA Expert

Post Tue Jun 24, 2014 11:41 am
AkiB wrote:
List S consists of 10 consecutive odd integers, and list T consists of 5 consecutive even integers. If the least integer in S is 7 more than the least integer in T, how much greater is the average (arithmetic mean) of the integers in S than the average of the integers in T?

a) 2
b) 7
c) 8
d) 12
e) 22
GIVEN:
Set S: 10 consecutive ODD integers
Set T: 5 consecutive EVEN integer

Let's create some sets that satisfy the given conditions.

...the least integer in S is 7 more than the least integer in T.
How about:
T: {0,.......}
S: {7,.......}
This satisfies the given condition

Now complete the sets:
T: {0, 2, 4, 6, 8}
S: {7, 9, 11, 13,..., 25}

How much greater is the average (arithmetic mean) of the integers in S than the average of the integers in T?
SHORTCUT: In ANY set where the numbers are equally spaced, the average = (smallest term + biggest term)/2 [aka the average of the smallest and biggest values]

So, average of set T = (0 + 8)/2 = 4
Average of set S = (7 + 25)/2 = 16

Difference = 16 - 4 = 12 = D

Cheers,
Brent

_________________
Brent Hanneson – Founder of GMATPrepNow.com
Use our video course along with Beat The GMAT's free 60-Day Study Guide

Check out the online reviews of our course
Come see all of our free resources

  • +1 Upvote Post
  • Quote
  • Flag
GMAT Prep Now's comprehensive video course can be used in conjunction with Beat The GMAT’s FREE 60-Day Study Guide and reach your target score in 2 months!
shrivats Junior | Next Rank: 30 Posts Default Avatar
Joined
11 Jun 2014
Posted:
23 messages
Upvotes:
5
Post Wed Jun 25, 2014 5:44 am
a bit long, but we can solve this algebraically...

T= x, x+2, x+4, x+6, x+8

sum of all elements of T
= x + x+2 + x+4 + x+6 + x+8
= 5x + 2(1+2+3+4)
= 5x + 20
A.M (T) = (5x+20)/5 = x+4



S = x+7,x+9,x+11,x+13 .... , x+25 ( since the least element of S is 7 more than x )

sum of all elements in S
(x+7)+ (x+9) + (x+11) + .... + (x+25)
7*10 + {x + (x+2) + (x+4) + (x+6) .... + (x+18)}
70 + 10x + 2 ( 1+2+3 .... +9)
70 + 10x + 2*45 = 10x + 160

A.M (S) = (10x+160)/10 = x+16


x+16 - (x+4) = 12

  • +1 Upvote Post
  • Quote
  • Flag

Top Member

Post Wed Jun 25, 2014 8:52 am
Another easy way is as follows

in Arithmetic Progression, the median is always equal to the Mean i.e. Average

Therefore if least of 5 even integer is x then least of 10 odd integers is x+7
Therefore mean of 5 even integer is x+4 (x, x+2, x+4,...) then mean of 10 odd integers is x+7+9 [average of (x+7)+8 and (x+7)+10]

The difference is = (x+16) - (x+4) = 12 ANSWER

_________________
Bhoopendra Singh & Sushma Jha - Founder "GMATinsight"
Testimonials e-mail: info@GMATinsight.com I Mobile: +91-9999687183 / +91-9891333772
To register for One-on-One FREE ONLINE DEMO Class Call/e-mail
One-On-One Private tutoring fee - US$40 per hour & for FULL COURSE (38 LIVE Sessions)-US$1000

  • +1 Upvote Post
  • Quote
  • Flag
Post Thu Dec 07, 2017 7:08 am
AkiB wrote:
List S consists of 10 consecutive odd integers, and list T consists of 5 consecutive even integers. If the least integer in S is 7 more than the least integer in T, how much greater is the average (arithmetic mean) of the integers in S than the average of the integers in T?

a) 2
b) 7
c) 8
d) 12
e) 22
We can let x = the least integer in T. Thus, T contains the following integers: x, x + 2, x + 4, x + 6, and x + 8.

Since the least integer in S is 7 more than the least integer in T, x + 7 = the least integer in S, and so S has the following integers: x + 7, x + 9, x + 11, x + 13, x + 15, x + 17, x + 19, x + 21, x + 23, and x + 25.

Since each list is an evenly spaced set, the average of each list is the respective median. Since the median of the integers in T is x + 4, and the median of integers in S is [(x +15) + (x + 17)]/2 = (2x + 32)/2 = x + 16, the averages of the integers in T and S are x + 4 and x +16, respectively.

Therefore, the average of list S is (x + 16) - (x + 4) = 12 more than the average of list T.

Answer: D

_________________
Jeffrey Miller Head of GMAT Instruction

  • +1 Upvote Post
  • Quote
  • Flag

Top First Responders*

1 GMATGuruNY 67 first replies
2 Rich.C@EMPOWERgma... 44 first replies
3 Brent@GMATPrepNow 40 first replies
4 Jay@ManhattanReview 25 first replies
5 Terry@ThePrinceto... 10 first replies
* Only counts replies to topics started in last 30 days
See More Top Beat The GMAT Members

Most Active Experts

1 image description GMATGuruNY

The Princeton Review Teacher

132 posts
2 image description Rich.C@EMPOWERgma...

EMPOWERgmat

112 posts
3 image description Jeff@TargetTestPrep

Target Test Prep

95 posts
4 image description Scott@TargetTestPrep

Target Test Prep

92 posts
5 image description Max@Math Revolution

Math Revolution

91 posts
See More Top Beat The GMAT Experts