• Economist Test Prep
    Free Trial & Practice Exam
    BEAT THE GMAT EXCLUSIVE

    Available with Beat the GMAT members only code

    MORE DETAILS
    Economist Test Prep
  • Magoosh
    Magoosh
    Study with Magoosh GMAT prep

    Available with Beat the GMAT members only code

    MORE DETAILS
    Magoosh
  • e-gmat Exclusive Offer
    Get 300+ Practice Questions
    25 Video lessons and 6 Webinars for FREE

    Available with Beat the GMAT members only code

    MORE DETAILS
    e-gmat Exclusive Offer
  • PrepScholar GMAT
    5 Day FREE Trial
    Study Smarter, Not Harder

    Available with Beat the GMAT members only code

    MORE DETAILS
    PrepScholar GMAT
  • The Princeton Review
    FREE GMAT Exam
    Know how you'd score today for $0

    Available with Beat the GMAT members only code

    MORE DETAILS
    The Princeton Review
  • Kaplan Test Prep
    Free Practice Test & Review
    How would you score if you took the GMAT

    Available with Beat the GMAT members only code

    MORE DETAILS
    Kaplan Test Prep
  • Target Test Prep
    5-Day Free Trial
    5-day free, full-access trial TTP Quant

    Available with Beat the GMAT members only code

    MORE DETAILS
    Target Test Prep
  • Varsity Tutors
    Award-winning private GMAT tutoring
    Register now and save up to $200

    Available with Beat the GMAT members only code

    MORE DETAILS
    Varsity Tutors
  • EMPOWERgmat Slider
    1 Hour Free
    BEAT THE GMAT EXCLUSIVE

    Available with Beat the GMAT members only code

    MORE DETAILS
    EMPOWERgmat Slider
  • Veritas Prep
    Free Veritas GMAT Class
    Experience Lesson 1 Live Free

    Available with Beat the GMAT members only code

    MORE DETAILS
    Veritas Prep

Any decimal that has only a finite number of nonzero digits

This topic has 5 expert replies and 1 member reply

Any decimal that has only a finite number of nonzero digits

Post

Timer

00:00

Your Answer

A

B

C

D

E

Global Stats

Difficult



Any decimal that has only a finite number of nonzero digits is a terminating decimal. For example, 24, 0.82, and 5.096 are three terminating decimals. If r and s are positive integers and the ratio r/s is expressed as a decimal, is r/s a terminating decimal?

(1) 90 < r < 100
(2) s = 4

Source: Official Guide

OA B

  • +1 Upvote Post
  • Quote
  • Flag
Post
BTGmoderatorDC wrote:
Any decimal that has only a finite number of nonzero digits is a terminating decimal. For example, 24, 0.82, and 5.096 are three terminating decimals. If r and s are positive integers and the ratio r/s is expressed as a decimal, is r/s a terminating decimal?

(1) 90 < r < 100
(2) s = 4

Source: Official Guide

OA B
A ratio, here, r/s is a terminating decimal if s has only two prime factors: 2 and 5.

Note that there is no role of r, so Statement 1 is insufficient.

From Statement 2, we know that s = 4 has a prime factor 2, it's sufficient to collude that r/s is a terminating decimal.

The correct answer: B

Hope this helps!

-Jay
_________________
Manhattan Review GRE Prep

Locations: GMAT Classes San Diego | GRE Prep Course Boston | GRE Prep Chicago | TOEFL Prep Classes NYC | and many more...

Schedule your free consultation with an experienced GMAT Prep Advisor! Click here.

  • +1 Upvote Post
  • Quote
  • Flag

GMAT/MBA Expert

Post
BTGmoderatorDC wrote:
Any decimal that has only a finite number of nonzero digits is a terminating decimal. For example, 24, 0.82, and 5.096 are three terminating decimals. If r and s are positive integers and the ratio r/s is expressed as a decimal, is r/s a terminating decimal?

(1) 90 < r < 100
(2) s = 4

Source: Official Guide

OA B
Target question: Is r/s a terminating decimal?

Statement 1: 90 < r < 100
There are several pairs of values that meet this condition. Here are two:
Case a: r = 91 and s = 2, in which case r/s = 91/2 = 45.5 = a terminating decimal
Case b: r = 91 and s = 3, in which case r/s = 91/3 = 30.33333.... = a non-terminating decimal
Since we cannot answer the target question with certainty, statement 1 is NOT SUFFICIENT

Statement 2: s = 4
Notice that 1/4 = 0.25, 2/4 = 0.5 and 3/4 = 0.75
So, if the denominator is 4, the resulting decimal will definitely be a terminating decimal.
In other words, if s = 4 then r/s must be a terminating decimal.
Since we can answer the target question with certainty, statement 2 is SUFFICIENT

Aside: There's a nice rule that says something like,
If the prime factorization of the denominator contains only 2's and/or 5's, then the decimal version of the fraction will be a terminating decimal.
Since the denominator, 4 = (2)(2), the rule tells us that r/s must be a terminating decimal.

Answer: B

Cheers,
Brent

_________________
Brent Hanneson – Creator of GMATPrepNow.com
Use our video course along with Beat The GMAT's free 60-Day Study Guide

Sign up for our free Question of the Day emails
And check out all of our free resources

  • +1 Upvote Post
  • Quote
  • Flag
GMAT Prep Now's comprehensive video course can be used in conjunction with Beat The GMAT’s FREE 60-Day Study Guide and reach your target score in 2 months!
Post
Here is further explanation on the logic of terminating decimals:
https://www.beatthegmat.com/ds-decimals-and-ratio-combined-t182983.html#583298

_________________


Ceilidh Erickson
Manhattan Prep GMAT & GRE instructor
EdM in Mind, Brain, and Education
Harvard Graduate School of Education


Manhattan Prep instructors all have 99th+ percentile scores and expert teaching experience.
Sign up for a FREE TRIAL, and learn why we have the highest ratings in the GMAT industry!

  • +1 Upvote Post
  • Quote
  • Flag
Free Manhattan Prep online events - The first class of every online Manhattan Prep course is free. Classes start every week.
Post
BTGmoderatorDC wrote:
Any decimal that has only a finite number of nonzero digits is a terminating decimal. For example, 24, 0.82, and 5.096 are three terminating decimals. If r and s are positive integers and the ratio r/s is expressed as a decimal, is r/s a terminating decimal?

(1) 90 < r < 100
(2) s = 4

Source: Official Guide
\[r,s\,\, \geqslant 1\,\,\,{\text{ints}}\]
\[\frac{r}{s}\,\,\,\mathop = \limits^? \,\,\,\,{\text{terminating}}\]
\[\left( 1 \right)\,\,90 < r < 100\,\,\,\,\left\{ \begin{gathered}
\,\left( {r,s} \right) = \left( {95,5} \right)\,\,\,\,\,\, \Rightarrow \,\,\,\,\left\langle {{\text{YES}}} \right\rangle \,\,\,\,\,\,\,\,\,\,\,\left( {\frac{{95}}{5} = \operatorname{int} } \right) \hfill \\
\,\left( {r,s} \right) = \left( {91,3} \right)\,\,\,\,\,\, \Rightarrow \,\,\,\,\left\langle {{\text{NO}}} \right\rangle \,\,\,\,\,\,\,\,\,\,\,\left( {\frac{{91}}{3} = 30\frac{1}{3} = 30.333 \ldots } \right) \hfill \\
\end{gathered} \right.\]

\[\left( 2 \right)\,\,s = 4\]
\[\left( * \right)\,\,\,\,{\text{r/s}}\,\,\,{\text{division}}\,\,{\text{algorithm}}:\,\,\,\left\{ \begin{gathered}
\,r = qs + R\,\,\,\mathop = \limits^{s\,\, = \,\,4} \,\,\,4q + R \hfill \\
\,q\,\,\operatorname{int} \,\,\,,\,\,\,\,0\,\,\, \leqslant \,\,\,R\,\,\operatorname{int} \,\,\, \leqslant \,\,3\,\,\,\,\left( { = s - 1} \right) \hfill \\
\end{gathered} \right.\]
\[\frac{r}{s}\,\,\,\,\mathop = \limits^{\,\left( * \right)} \,\,\,\,\frac{{4q + R}}{4} = q + \frac{R}{4}\,\, = \,\,\operatorname{int} \,\, + \,\,\frac{R}{4}\,\,\,\,\,\,\,\]
\[\frac{R}{4} = \,\,\,\left\{ {\begin{array}{*{20}{c}}
{\,\,\frac{0}{4}} \\
{\,\,\frac{1}{4}} \\
{\,\,\frac{2}{4}} \\
{\,\,\frac{3}{4}}
\end{array}} \right.\begin{array}{*{20}{c}}
{\,\,{\text{if}}\,\,\,R = 0\,\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\left\langle {{\text{YES}}} \right\rangle \,\,\,\,\,\,\,\,\,\,\left( {\frac{r}{4} = \operatorname{int} } \right)} \\
{\,\,{\text{if}}\,\,\,R = 1\,\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\left\langle {{\text{YES}}} \right\rangle \,\,\,\,\,\,\,\,\,\,\left( {\frac{r}{4} = \operatorname{int} \,\, + \,\,0.25} \right)} \\
{\,\,{\text{if}}\,\,\,R = 2\,\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\left\langle {{\text{YES}}} \right\rangle \,\,\,\,\,\,\,\,\,\,\left( {\frac{r}{4} = \operatorname{int} \,\, + \,\,0.5} \right)} \\
{\,\,{\text{if}}\,\,\,R = 3\,\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\left\langle {{\text{YES}}} \right\rangle \,\,\,\,\,\,\,\,\,\,\left( {\frac{r}{4} = \operatorname{int} \,\, + \,\,0.75} \right)}
\end{array}\]

This solution follows the notations and rationale taught in the GMATH method.

Regards,
Fabio.

_________________
Fabio Skilnik :: www.GMATH.net (Math for the GMAT)
Course release PROMO : finish our test drive till 30/Sep with (at least) 60 correct answers out of 92 (12-questions Mock included) to gain a 70% discount!

  • +1 Upvote Post
  • Quote
  • Flag
Post
For a fraction to be terminating two conditions must satisfy:
1) numerator is an INTEGER.
2) denominator should be of form 2^x 5^y (x,y => integers which also includes 0).

now in this question
the denominator is 2^2 5^0
hence it satisfies.

Regards!

  • +1 Upvote Post
  • Quote
  • Flag
Post
swerve wrote:
For a fraction to be terminating two conditions must satisfy:
1) numerator is an INTEGER.
2) denominator should be of form 2^x 5^y (x,y => integers which also includes 0).
Hi swerve!

What about 3/30 ? This number/fraction is terminating (=0.1) but it does not satisfy the conditions you have presented...

Do not forget that for the conditions above, first you must "simplify your fraction"... in other words:

Be sure numerator and denominator are relative prime, then you apply your "laws"!

Regards,
Fabio.

P.S.: curiously, integers x and y MAY be negative... but if so, we are not talking about "denominator", really... therefore I would prefer to add a nonnegative condition on x and y, in your second rule.

_________________
Fabio Skilnik :: www.GMATH.net (Math for the GMAT)
Course release PROMO : finish our test drive till 30/Sep with (at least) 60 correct answers out of 92 (12-questions Mock included) to gain a 70% discount!

  • +1 Upvote Post
  • Quote
  • Flag

Top First Responders*

1 Jay@ManhattanReview 84 first replies
2 Brent@GMATPrepNow 73 first replies
3 fskilnik 50 first replies
4 GMATGuruNY 37 first replies
5 Rich.C@EMPOWERgma... 16 first replies
* Only counts replies to topics started in last 30 days
See More Top Beat The GMAT Members

Most Active Experts

1 image description fskilnik

GMAT Teacher

199 posts
2 image description Brent@GMATPrepNow

GMAT Prep Now Teacher

166 posts
3 image description Scott@TargetTestPrep

Target Test Prep

118 posts
4 image description Jay@ManhattanReview

Manhattan Review

98 posts
5 image description Max@Math Revolution

Math Revolution

95 posts
See More Top Beat The GMAT Experts