• 7 CATs FREE!
    If you earn 100 Forum Points

    Engage in the Beat The GMAT forums to earn
    100 points for $49 worth of Veritas practice GMATs FREE

    Veritas Prep
    VERITAS PRACTICE GMAT EXAMS
    Earn 10 Points Per Post
    Earn 10 Points Per Thanks
    Earn 10 Points Per Upvote
    REDEEM NOW

A family consisting of one mother...

This topic has 3 expert replies and 5 member replies

A family consisting of one mother...

Post
A family consisting of one mother, one father, two daughters and a son is taking a road trip in a sedan. The sedan has two front seats and three back seats. If one of the parents must drive and the two daughters refuse to sit next to each other, how many possible seating arrangements are there?
a 28
b 32
c 48
d 60
e 120

Source: MGMAT CAT EXAM
Answer: B

I have no idea where to start here!! Help!! Thanks!!

  • +1 Upvote Post
  • Quote
  • Flag
Legendary Member Default Avatar
Joined
15 Apr 2011
Posted:
1085 messages
Followed by:
21 members
Upvotes:
158
Post
It's simple indeed

Let's consider, Farther is driving first and the pertinent cases

1 daughter sits in the front seat and others seat in the back seats 3!. Two such cases 2*3!
Son is in the front seat, mom is in the middle, 2 ways. Mom is in the front seat and Son is in the middle 2 ways. Total makes 2*3!+2+2=16 ways.

The same number of ways when Mom is driving and Farther takes his turn Smile

16*2=32

b


factor26 wrote:
A family consisting of one mother, one father, two daughters and a son is taking a road trip in a sedan. The sedan has two front seats and three back seats. If one of the parents must drive and the two daughters refuse to sit next to each other, how many possible seating arrangements are there?
a 28
b 32
c 48
d 60
e 120

Source: MGMAT CAT EXAM
Answer: B

I have no idea where to start here!! Help!! Thanks!!

_________________
Success doesn't come overnight!

  • +1 Upvote Post
  • Quote
  • Flag
Legendary Member
Joined
16 Oct 2011
Posted:
588 messages
Followed by:
9 members
Upvotes:
130
Test Date:
3rd May '12
Target GMAT Score:
750+
GMAT Score:
720
Post
factor26 wrote:
A family consisting of one mother, one father, two daughters and a son is taking a road trip in a sedan. The sedan has two front seats and three back seats. If one of the parents must drive and the two daughters refuse to sit next to each other, how many possible seating arrangements are there?
a 28
b 32
c 48
d 60
e 120

Source: MGMAT CAT EXAM
Answer: B

I have no idea where to start here!! Help!! Thanks!!
You can start of bu drawing the kind of arrangements

2 in the front
3 at the back
Driver has to be a parent, so we have 2 options for one of the front seats




Quote:
the two daughters refuse to sit next to each other,
Lets say one of the sisters sit at the front seat
So we have 2 options for the second seat in the front
and 3 people to arrange on 3 seats at the back



Arrangements = 2*2*3*2*1 = 24

Now lets say both the sisters sit on the backseats

NO of options for the front seat= 2 [son or one of the parent]
There has to be one person b/w the two sisters

the arrangements would be like this

No of arrangements= 8


Total no of arrangements = 24+8 = 32


Option B

  • +1 Upvote Post
  • Quote
  • Flag

GMAT/MBA Expert

Post

_________________
Mitch Hunt
Private Tutor for the GMAT and GRE
GMATGuruNY@gmail.com

If you find one of my posts helpful, please take a moment to click on the "UPVOTE" icon.

Available for tutoring in NYC and long-distance.
For more information, please email me at GMATGuruNY@gmail.com.
Student Review #1
Student Review #2
Student Review #3

  • +1 Upvote Post
  • Quote
  • Flag
Free GMAT Practice Test How can you improve your test score if you don't know your baseline score? Take a free online practice exam. Get started on achieving your dream score today! Sign up now.
Newbie | Next Rank: 10 Posts Default Avatar
Joined
08 Jul 2012
Posted:
6 messages
Post
GuruNY, I have tried a different approach. Not sure, if I got the answer by fluke or the approach is correct. Please help me understand if my logic is correct. Thanks!

Driver seat=2
Rest four seats=4!
Two sisters always sit together = considering 2 sisters as 1 unit = 4c3 *2!

Solution = 2(4!-4c3*2!)=2*16=32

GMATGuruNY wrote:

  • +1 Upvote Post
  • Quote
  • Flag

GMAT/MBA Expert

Post
factor26 wrote:
A family consisting of one mother, one father, two daughters and a son is taking a road trip in a sedan. The sedan has two front seats and three back seats. If one of the parents must drive and the two daughters refuse to sit next to each other, how many possible seating arrangements are there?
a 28
b 32
c 48
d 60
e 120
!
Here's another approach. It's a little longer, but it demonstrates another way to tackle restrictions.

The restriction about the sisters is somewhat problematic, so I decided to ignore the rule and seat all 5 people without obeying that restriction.

Then once I determine the total number of arrangements, I subtract the number of arrangements where the sisters are sitting together.

Number the seats as follows:
Seat #1: driver's seat
Seat #2: passenger's seat
Seats #3, 4, 5: back seats

# of arrangements where we ignore rule about the sisters not sitting together
Take the task of seating all 5 people and break into stages.
Stage 1: Seat someone in seat #1
Only a parent can sit here. So, this stage can be accomplished in 2 ways.
Stage 2: Seat someone in seat #2
Once we have seated someone in seat #1, there are 4 people remaining. So, this stage can be accomplished in 4 ways.
Stage 3: Seat someone in seat #3
At this point, we have already seated 2 people, so there are now 3 people remaining.
So, this stage can be accomplished in 3 ways.
Stage 4: Seat someone in seat #4
There are 2 people remaining, so this stage can be accomplished in 2 ways.
Stage 5: Seat someone in seat $5
This stage can be accomplished in 1 way

By the Fundamental Counting Principle (FCP) we can complete all 5 stages (and thus seat all 5 people) in (2)(4)(3)(2)(1) ways
48 ways

So there are 48 different ways to seat the family such that a parent drives. At this point, the 48 different arrangements include arrangements where the sisters are seated together. So, we need to SUBTRACT the number of arrangements where the sisters are seated together.

There are two cases where the sisters are together.
case 1: the sisters are in seats #3 and #4
case 2: the sisters are in seats #4 and #5

case 1: the sisters are in seats #3 and #4
Once again, we'll take the task of seating everyone and break it into stages:
Stage 1: seat a parent in seat #1.
Must be 1 of 2 parents. So, this stage can be accomplished in 2 ways.
Stage 2: seat a sister in seat #3
Must be 1 of 2 sisters. So, this stage can be accomplished in 2 ways.
Stage 3: seat the other sister in seat #4.
Once we have seated a sister in seat #3, only 1 sister remains. So, this stage can be accomplished in 1 way.
Stage 4: seat someone in seat #2.
At this point, we have seated 3 people, so only 2 people remain. So, this stage can be accomplished in 2 ways.
Stage 5: seat someone in seat #5.
One person remaining. So, this stage can be accomplished in 1 way.

By the Fundamental Counting Principle (FCP) we can complete all 5 stages (and thus seat the sisters are in seats #3 and #4) in (2)(2)(1)(2)(1) ways
8 ways

case 2: the sisters are in seats #4 and #5
We can follow the same steps as above to get 8 more arrangements

So the final answer is 48 - 8 - 8 = 32

Cheers,
Brent

_________________
Brent Hanneson – Creator of GMATPrepNow.com
Use our video course along with Beat The GMAT's free 60-Day Study Guide

Sign up for our free Question of the Day emails
And check out all of our free resources

  • +1 Upvote Post
  • Quote
  • Flag
GMAT Prep Now's comprehensive video course can be used in conjunction with Beat The GMAT’s FREE 60-Day Study Guide and reach your target score in 2 months!
Newbie | Next Rank: 10 Posts Default Avatar
Joined
28 May 2013
Posted:
7 messages
Post
Can anybody please help me with this ... I am not able to understand the whole. If I try to apply alphabets order.
Assume Father stands for F , Mother for M , Son for S and Daughters for D.
Now taking the required arrangement of the in first line we can have F/M
in second line any of M/F,D,S,D where D can not come together.
so the possible arrangements for first line : 2!
for second (4! - 4C3 *2) (where two daughters combined to one count)
my concern Is it a right approach?

Thanks

  • +1 Upvote Post
  • Quote
  • Flag
Senior | Next Rank: 100 Posts Default Avatar
Joined
17 Sep 2015
Posted:
57 messages
Post
Brent,

How about the way I have done.

1)Seat 1: Either parent seats: 2 ways
2)Seat 3:Any of the 4 seats: 4 ways
3)Seat 4:Any of the pending 3 except sister sits: 2 ways
4)Seat 2:Pending 2 sits: 2 ways
5)Seat 5:Pending 1 sits: 1 way

Answer:2*4*2*2*1=32

Answer 32. Correct me if my understanding and method is wrong.

  • +1 Upvote Post
  • Quote
  • Flag

GMAT/MBA Expert

Post
Hi All,

These types of questions can be approached a couple of different ways. There's a "visual" aspect to this question that can help you to take advantage of some shortcuts built into the prompt, so I'm going to use a bit of "brute force" and some pictures to answer this question. Since we're arranging people in seats, we'll end up doing some "permutation math."

M = Mother
F = Father
D1 = 1st Daughter
D2 = 2nd Daughter
S = Son

Front Back
_ _ _ _ _
1st spot = driver

We have 2 restrictions that we have to follow:
1) Either the Father or Mother must be the driver
2) The two daughters CANNOT sit next to one another

Let's put the Mother in the driver's seat and count up the possibilities:

M F (2)(1)(1) Here, the two daughters have to be separated by the son, but either daughter could be in the "first back seat" = 2 options

M D1 (3)(2)(1) Here, with the first daughter up front, the remaining 3 people (F, D2 and S) can be in any of the back seats = 6 options
M D2 (3)(2)(1) Here, we have the same situation, but with the second daughter up front… = 6 options
M S (2)(1)(1) Here, with the son up front, we have the same scenario as we had when the Father was up front = 2 options

Total options with Mother driving = 2+6+6+2 = 16 options

Now we can take advantage of the shortcut I mentioned earlier - We can flip-flop the Mother and Father in the above examples. This will gives us another 16 options with the Father driving.

Total options: 16 + 16 = 32 options

Final Answer: B

GMAT assassins aren't born, they're made,
Rich

_________________
Contact Rich at Rich.C@empowergmat.com

  • +1 Upvote Post
  • Quote
  • Flag
  • Varsity Tutors
    Award-winning private GMAT tutoring
    Register now and save up to $200

    Available with Beat the GMAT members only code

    MORE DETAILS
    Varsity Tutors
  • Kaplan Test Prep
    Free Practice Test & Review
    How would you score if you took the GMAT

    Available with Beat the GMAT members only code

    MORE DETAILS
    Kaplan Test Prep
  • Magoosh
    Magoosh
    Study with Magoosh GMAT prep

    Available with Beat the GMAT members only code

    MORE DETAILS
    Magoosh
  • The Princeton Review
    FREE GMAT Exam
    Know how you'd score today for $0

    Available with Beat the GMAT members only code

    MORE DETAILS
    The Princeton Review
  • PrepScholar GMAT
    5 Day FREE Trial
    Study Smarter, Not Harder

    Available with Beat the GMAT members only code

    MORE DETAILS
    PrepScholar GMAT
  • Veritas Prep
    Free Veritas GMAT Class
    Experience Lesson 1 Live Free

    Available with Beat the GMAT members only code

    MORE DETAILS
    Veritas Prep
  • e-gmat Exclusive Offer
    Get 300+ Practice Questions
    25 Video lessons and 6 Webinars for FREE

    Available with Beat the GMAT members only code

    MORE DETAILS
    e-gmat Exclusive Offer
  • Target Test Prep
    5-Day Free Trial
    5-day free, full-access trial TTP Quant

    Available with Beat the GMAT members only code

    MORE DETAILS
    Target Test Prep
  • EMPOWERgmat Slider
    1 Hour Free
    BEAT THE GMAT EXCLUSIVE

    Available with Beat the GMAT members only code

    MORE DETAILS
    EMPOWERgmat Slider
  • Economist Test Prep
    Free Trial & Practice Exam
    BEAT THE GMAT EXCLUSIVE

    Available with Beat the GMAT members only code

    MORE DETAILS
    Economist Test Prep

Top First Responders*

1 fskilnik@GMATH 72 first replies
2 Brent@GMATPrepNow 46 first replies
3 Jay@ManhattanReview 44 first replies
4 GMATGuruNY 41 first replies
5 Rich.C@EMPOWERgma... 36 first replies
* Only counts replies to topics started in last 30 days
See More Top Beat The GMAT Members

Most Active Experts

1 image description fskilnik@GMATH

GMATH Teacher

192 posts
2 image description Scott@TargetTestPrep

Target Test Prep

183 posts
3 image description Brent@GMATPrepNow

GMAT Prep Now Teacher

120 posts
4 image description GMATGuruNY

The Princeton Review Teacher

89 posts
5 image description Max@Math Revolution

Math Revolution

87 posts
See More Top Beat The GMAT Experts