• 7 CATs FREE!
If you earn 100 Forum Points

Engage in the Beat The GMAT forums to earn
100 points for \$49 worth of Veritas practice GMATs FREE VERITAS PRACTICE GMAT EXAMS
Earn 10 Points Per Post
Earn 10 Points Per Thanks
Earn 10 Points Per Upvote

## If the circle above has center O and circumference 18Ï€, the

##### This topic has expert replies
Moderator
Posts: 1225
Joined: 29 Oct 2017
Followed by:2 members

### If the circle above has center O and circumference 18Ï€, the

by AAPL » Mon Sep 10, 2018 5:12 am

00:00

A

B

C

D

E

## Global Stats

Official Guide If the circle above has center O and circumference 18Ï€, then the perimeter of sector RSTO is
$$A.\ 3\pi+9$$
$$B.\ 3\pi+18$$
$$C.\ 6\pi+9$$
$$D.\ 6\pi+18$$
$$E.\ 6\pi+24$$
OA B.

### GMAT/MBA Expert

GMAT Instructor
Posts: 13600
Joined: 08 Dec 2008
Location: Vancouver, BC
Thanked: 5254 times
Followed by:1256 members
GMAT Score:770
by Brent@GMATPrepNow » Mon Sep 10, 2018 5:42 am
AAPL wrote:Official Guide If the circle above has center O and circumference 18Ï€, then the perimeter of sector RSTO is
$$A.\ 3\pi+9$$
$$B.\ 3\pi+18$$
$$C.\ 6\pi+9$$
$$D.\ 6\pi+18$$
$$E.\ 6\pi+24$$
OA B.
The circle has circumference 18Ï€
Solve to get: radius = 9

So, OR = 9 and OT = 9

Now, we'll deal with arc RST
Here the sector angle = 60Â°
60Â°/360Â° = 1/6
So, the arc RST represents 1/6 of the ENTIRE circle
Since the ENTIRE circle has circumference 18Ï€, the length of arc RST = (1/6)(18Ï€) = 3Ï€

So, the perimeter of sector RSTO = 9 + 9 + 3Ï€
= 18 + 3Ï€

Cheers,
Brent
Brent Hanneson - Creator of GMATPrepNow.com
Use my video course along with Beat The GMAT's free 60-Day Study Guide And check out all of these free resources

GMAT Instructor
Posts: 1449
Joined: 09 Oct 2010
Thanked: 59 times
Followed by:32 members
by fskilnik@GMATH » Mon Sep 10, 2018 10:07 am
AAPL wrote:Official Guide If the circle above has center O and circumference 18Ï€, then the perimeter of sector RSTO is
$$A.\ 3\pi+9 \,\,\,\,\,\,\,\, B.\ 3\pi+18 \,\,\,\,\,\,\,\, C.\ 6\pi+9 \,\,\,\,\,\,\,\, D.\ 6\pi+18 \,\,\,\,\,\,\,\, E.\ 6\pi+24$$
$\left. \begin{gathered} ?\,\,\, = \,\,\,2R + \frac{{60}}{{360}}\left( {2\pi R} \right)\,\,\,\, \Rightarrow \,\,\,\,\,\boxed{\,\,? = 2R\,\,\left( {1 + \frac{\pi }{6}} \right)\,\,\,}\,\,\, \hfill \\ 2\pi R = 18\pi \,\,\,\,\mathop \Rightarrow \limits^{:\,\,\pi } \,\,\,\,2R = 18 \hfill \\ \end{gathered} \right\}\,\,\,\,\,\,\, \Rightarrow \,\,\,\,\,\,?\,\, = \,\,\underleftrightarrow {18\left( {1 + \frac{\pi }{6}} \right)}\,\, = \,\,18 + 3\pi$

Please note that even in a trivial problem like this one, we never forget the main motto of our method:

Present FOCUS and DATA in an structured way and CONNECT them as soon as possible!

Regards,
fskilnik.
Fabio Skilnik :: GMATH method creator ( Math for the GMAT)
English-speakers :: https://www.gmath.net
Portuguese-speakers :: https://www.gmath.com.br

### GMAT/MBA Expert

GMAT Instructor
Posts: 4203
Joined: 25 Apr 2015
Location: Los Angeles, CA
Thanked: 43 times
Followed by:21 members
by Scott@TargetTestPrep » Wed Apr 10, 2019 4:58 pm
AAPL wrote:Official Guide If the circle above has center O and circumference 18Ï€, then the perimeter of sector RSTO is
$$A.\ 3\pi+9$$
$$B.\ 3\pi+18$$
$$C.\ 6\pi+9$$
$$D.\ 6\pi+18$$
$$E.\ 6\pi+24$$
OA B.
We see that the perimeter of sector RSTO consists of 2 radii of the circle and arc RST.

Since the circumference of the circle O is 18Ï€, its radius must be 9. Since the angle measure of sector RSTO is 60 degrees, the length of arc RST must be 1/6 of the circumference of the circle (notice that 60 degrees is 1/6 of 360 degrees). Therefore, arc RST has a length of 1/6 x 18Ï€ = 3Ï€. So the perimeter of sector RSTO is

3Ï€ + 9 + 9 = 3Ï€ + 18