Janson's salary and Karen's salary were each p percent greater in 1998 than in 1995. What is the value of p?
(1) In 1995 Karen's salary was $2,000 greater than Jason's.
(2) In 1998 Karen's salary was $2,440 greater than Jason's.
OA C
Source: GMAT Prep
Free e-GMAT Live Webinar! Master SC with 90% Accuracy
LIVE: JUNE 10TH, 2023, 7-9AM PST
JOIN FREE WEBINAR: USE MEANING & LOGIC TO SOLVE 700+ LEVEL SENTENCE CORRECTION Qs with 90+% ACCURACY.
Janson's salary and Karen's salary were each p percent greater in 1998 than in 1995. What is the value of p?
This topic has expert replies
-
- Moderator
- Posts: 7187
- Joined: Thu Sep 07, 2017 4:43 pm
- Followed by:23 members
Timer
00:00
Your Answer
A
B
C
D
E
Global Stats
GMAT/MBA Expert
- [email protected]
- GMAT Instructor
- Posts: 16202
- Joined: Mon Dec 08, 2008 6:26 pm
- Location: Vancouver, BC
- Thanked: 5254 times
- Followed by:1268 members
- GMAT Score:770
Timer
00:00
Your Answer
A
B
C
D
E
Global Stats
Target question: What is the value of p?BTGmoderatorDC wrote: ↑Tue Jan 31, 2023 7:48 pmJanson's salary and Karen's salary were each p percent greater in 1998 than in 1995. What is the value of p?
(1) In 1995 Karen's salary was $2,000 greater than Jason's.
(2) In 1998 Karen's salary was $2,440 greater than Jason's.
OA C
Source: GMAT Prep
Given: Jason's salary and Karen's salary were each p percent greater in 1998 than in 1995.
IMPORTANT: If my 1998 salary is p percent greater than my 1995 salary, then: 1998 salary = (1 + p/100)(1995 salary)
For example, if my 1998 salary is 7 percent greater than my 1995 salary, then: 1998 salary = (1 + 7/100)(1995 salary) = 1.07(1995 salary)
Let K = Karen's salary in 1995
Let J = Jason's salary in 1995
So, (1 + p/100)K = Karen's salary in 1998
And (1 + p/100)J = Jason's salary in 1998
Statement 1: In 1995 Karen's salary was $2,000 greater than Jason's
So, we get K - J = 2000
So there's no information about p, so we can't determine the value of p
Since we cannot answer the target question with certainty, statement 1 is NOT SUFFICIENT
Statement 2: In 1998 Karen's salary was $2,440 greater than Jason's
We get: (1 + p/100)K - (1 + p/100)J = 2400
NOTICE that we can rewrite this as: (1 + p/100)(K - J) = 2400
Since we cannot solve this equation for p, statement 2 is NOT SUFFICIENT
Statements 1 and 2 combined
From statement 1, we concluded that K - J = 2000
From statement 2, we concluded that (1 + p/100)(K - J) = 2400
Now take the second equation and replace (K - J) with 2000 to get: (1 + p/100)(2000) = 2400
At this point, we need only recognize that we COULD solve this equation for p, but we're not going to, since this would waste valuable time on the time-sensitive GMAT.
Since we can answer the target question with certainty, the combined statements are SUFFICIENT
Answer: C