• PrepScholar GMAT
    5 Day FREE Trial
    Study Smarter, Not Harder

    Available with Beat the GMAT members only code

    MORE DETAILS
    PrepScholar GMAT
  • e-gmat Exclusive Offer
    Get 300+ Practice Questions
    25 Video lessons and 6 Webinars for FREE

    Available with Beat the GMAT members only code

    MORE DETAILS
    e-gmat Exclusive Offer
  • EMPOWERgmat Slider
    1 Hour Free
    BEAT THE GMAT EXCLUSIVE

    Available with Beat the GMAT members only code

    MORE DETAILS
    EMPOWERgmat Slider
  • Magoosh
    Magoosh
    Study with Magoosh GMAT prep

    Available with Beat the GMAT members only code

    MORE DETAILS
    Magoosh
  • Target Test Prep
    5-Day Free Trial
    5-day free, full-access trial TTP Quant

    Available with Beat the GMAT members only code

    MORE DETAILS
    Target Test Prep
  • Varsity Tutors
    Award-winning private GMAT tutoring
    Register now and save up to $200

    Available with Beat the GMAT members only code

    MORE DETAILS
    Varsity Tutors
  • Economist Test Prep
    Free Trial & Practice Exam
    BEAT THE GMAT EXCLUSIVE

    Available with Beat the GMAT members only code

    MORE DETAILS
    Economist Test Prep
  • Veritas Prep
    Free Veritas GMAT Class
    Experience Lesson 1 Live Free

    Available with Beat the GMAT members only code

    MORE DETAILS
    Veritas Prep
  • Kaplan Test Prep
    Free Practice Test & Review
    How would you score if you took the GMAT

    Available with Beat the GMAT members only code

    MORE DETAILS
    Kaplan Test Prep

OG 13 144

This topic has 2 expert replies and 1 member reply
oquiella Master | Next Rank: 500 Posts Default Avatar
Joined
12 May 2015
Posted:
164 messages
Upvotes:
3

OG 13 144

Post Wed Dec 23, 2015 3:58 pm
Are all of the numbers in a certain list of 15 numbers equal?

1. The sum of all the numbers in the list is 60.
2. The sum of any 3 numbers in the list is 12.


Please explain reasoning

  • +1 Upvote Post
  • Quote
  • Flag
Need free GMAT or MBA advice from an expert? Register for Beat The GMAT now and post your question in these forums!
Top Reply
Post Thu Dec 24, 2015 9:25 am
Hi oquiella,,

This DS question is really about considering the "possibilities" and making sure that you're thorough with your thinking.

We're told that there is a group of 15 numbers. We're asked if they're all equal. This is a YES/NO question.

Fact 1: The sum of the numbers is 60

IF.....
We have fifteen 4s, then the answer to the question is YES.

IF....
We have ANY OTHER option (e.g. fourteen 3s and one 18), then the answer to the question is NO.
Fact 1 is INSUFFICIENT

Fact 2: The sum of ANY 3 numbers in the list is 12.

With THIS information, we know that all the numbers MUST be 4s. Here's why:

With fifteen 4s, we know that selecting ANY 3 of them will give us a sum of 12. If we change EVEN 1 of those numbers to something else though, then there's no way to GUARANTEE that we get a total of 12 from any 3.

For example, if we have fourteen 4s and one 5. It's possible that we could pick 3 numbers and get 4+4+5 = 13, which is NOT a sum of 12. We're told that picking ANY 3 numbers gets us a sum of 12 though, so this serves as proof that no other option exists. Therefore, all fifteen numbers MUST be 4s and the answer to the question is ALWAYS YES.
Fact 2 is SUFFICIENT

Final Answer: B

GMAT assassins aren't born, they're made,
Rich

_________________
Contact Rich at Rich.C@empowergmat.com

  • +1 Upvote Post
  • Quote
  • Flag
Thanked by: Pazoki
oquiella Master | Next Rank: 500 Posts Default Avatar
Joined
12 May 2015
Posted:
164 messages
Upvotes:
3
Top Reply
Post Thu Dec 24, 2015 6:01 am
Brent@GMATPrepNow wrote:
Quote:
Are all of the numbers in a certain list of 15 numbers equal?

(1) The sum of all the numbers in the list is 60.
(2) The sum of any 3 numbers in the list is 12.
Target question: Are all 15 numbers equal?

Statement 1: The sum of all the numbers in the list is 60.
There are several possible scenarios that satisfy this statement. Here are two.
Case a: numbers are: {4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4}, in which case all of the numbers are equal
Case b: numbers are: {4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 1, 7}, in which case all of the numbers are not equal
Statement 1 is NOT SUFFICIENT

Statement 2: The sum of any 3 numbers in the list is 12.
This is a very powerful statement, because it tells us that all of the numbers in the set are equal.
Let's let a,b,c and d be four of the 15 numbers in the set.
We know that a + b + c = 12
Notice that if I replace ANY of these three values (a,b or c) with d, the sum must still be 12.
This tells us that a, b and c must all equal d.
I can use a similar approach to show that e, f and g must also equal d.
In fact, I can show that ALL of the numbers in the set must equal d, which means all of the numbers in the set must be equal.
Since we can answer the target question with certainty, statement 2 is SUFFICIENT

Answer = B

Cheers,
Brent
Hi Brent,


Isn't it possible for a,b or c to be different numbers that equal 12. It doesn't have to be 4 + 4 +4 can it not also be 3 + 5 + 4. Which would yield 2 answers making statement 2 insufficient?

  • +1 Upvote Post
  • Quote
  • Flag
Thanked by: Pazoki
Post Thu Dec 24, 2015 9:25 am
Hi oquiella,,

This DS question is really about considering the "possibilities" and making sure that you're thorough with your thinking.

We're told that there is a group of 15 numbers. We're asked if they're all equal. This is a YES/NO question.

Fact 1: The sum of the numbers is 60

IF.....
We have fifteen 4s, then the answer to the question is YES.

IF....
We have ANY OTHER option (e.g. fourteen 3s and one 18), then the answer to the question is NO.
Fact 1 is INSUFFICIENT

Fact 2: The sum of ANY 3 numbers in the list is 12.

With THIS information, we know that all the numbers MUST be 4s. Here's why:

With fifteen 4s, we know that selecting ANY 3 of them will give us a sum of 12. If we change EVEN 1 of those numbers to something else though, then there's no way to GUARANTEE that we get a total of 12 from any 3.

For example, if we have fourteen 4s and one 5. It's possible that we could pick 3 numbers and get 4+4+5 = 13, which is NOT a sum of 12. We're told that picking ANY 3 numbers gets us a sum of 12 though, so this serves as proof that no other option exists. Therefore, all fifteen numbers MUST be 4s and the answer to the question is ALWAYS YES.
Fact 2 is SUFFICIENT

Final Answer: B

GMAT assassins aren't born, they're made,
Rich

_________________
Contact Rich at Rich.C@empowergmat.com

  • +1 Upvote Post
  • Quote
  • Flag
Thanked by: Pazoki

Best Conversation Starters

1 lheiannie07 116 topics
2 LUANDATO 68 topics
3 swerve 65 topics
4 ardz24 65 topics
5 Roland2rule 64 topics
See More Top Beat The GMAT Members...

Most Active Experts

1 image description Scott@TargetTestPrep

Target Test Prep

198 posts
2 image description Brent@GMATPrepNow

GMAT Prep Now Teacher

181 posts
3 image description Jeff@TargetTestPrep

Target Test Prep

168 posts
4 image description Rich.C@EMPOWERgma...

EMPOWERgmat

134 posts
5 image description GMATGuruNY

The Princeton Review Teacher

119 posts
See More Top Beat The GMAT Experts