When a player in a certain game tossed a coin a number of times, 4 more heads than tails resulted. Heads or tails result

This topic has expert replies
Legendary Member
Posts: 1552
Joined: 01 Mar 2018
Followed by:2 members

Timer

00:00

Your Answer

A

B

C

D

E

Global Stats

When a player in a certain game tossed a coin a number of times, 4 more heads than tails resulted. Heads or tails resulted from each time the player tossed the coin. How many times did heads result?

(1) The player tossed the coin 24 times.
(2) The player received 3 points each time heads resulted and 1 point each time tails resulted, for a total of 52 points.

Answer: D

Source: Official Guide

GMAT/MBA Expert

User avatar
GMAT Instructor
Posts: 15949
Joined: 08 Dec 2008
Location: Vancouver, BC
Thanked: 5254 times
Followed by:1267 members
GMAT Score:770

Timer

00:00

Your Answer

A

B

C

D

E

Global Stats

Gmat_mission wrote:
Thu Nov 18, 2021 12:04 pm
When a player in a certain game tossed a coin a number of times, 4 more heads than tails resulted. Heads or tails resulted from each time the player tossed the coin. How many times did heads result?

(1) The player tossed the coin 24 times.
(2) The player received 3 points each time heads resulted and 1 point each time tails resulted, for a total of 52 points.

Answer: D

Source: Official Guide
Given: When a player in a certain game tossed a coin a number of times, 4 more heads than tails resulted. Heads or tails resulted each time the player tossed the coin.
Let H = the total number of heads that resulted
Let T = the total number of tails that resulted
So, from the given information we can write: H - T = 4

Target question: What is the value of H?

Statement 1: The player tossed the coin 24 times.
We can write: H + T = 24, which means we now have the following system of equations:
H - T = 4
H + T = 24
Since we have a system of 2 different linear equations with 2 variables, we COULD solve the system for H and T, which means we could answer the target question with certainty [although we would never waste precious time on tests they actually performing the necessary calculations]
Statement 1 is SUFFICIENT

Statement 2: The player received 3 points each time heads resulted and 1 point each time tails resulted, for a total of 52 points
We can write: 3H + 1T = 52, which means we now have the following system of equations:
H - T = 4
3H + 1T = 52
Since we have a system of 2 different linear equations with 2 variables, we COULD solve the system for H and T, which means we could answer the target question with certainty
Statement 2 is SUFFICIENT

Answer: D

Cheers,
Brent
Brent Hanneson - Creator of GMATPrepNow.com
Image