• 7 CATs FREE!
    If you earn 100 Forum Points

    Engage in the Beat The GMAT forums to earn
    100 points for $49 worth of Veritas practice GMATs FREE

    Veritas Prep
    VERITAS PRACTICE GMAT EXAMS
    Earn 10 Points Per Post
    Earn 10 Points Per Thanks
    Earn 10 Points Per Upvote
    REDEEM NOW

The first and second numbers in a sequence of numbers are plotted as the \(x\) and \(y\) coordinates, respectively, of a

This topic has expert replies
Legendary Member
Posts: 885
Joined: 14 Oct 2017
Followed by:3 members

Timer

00:00

Your Answer

A

B

C

D

E

Global Stats

The first and second numbers in a sequence of numbers are plotted as the \(x\) and \(y\) coordinates, respectively, of a point on the coordinate plane, as are the third and fourth numbers, and all subsequent pairs in the sequence and a line is formed by connecting these points, what would be the slope of the line?

(1) Except for the first number, the sequence of numbers is formed by doubling the previous number and then subtracting 1.
(2) The first number in the sequence is 3.

[spoiler]OA=A[/spoiler]

Source: Veritas Prep

Legendary Member
Posts: 1843
Joined: 02 Mar 2018
Followed by:3 members

Timer

00:00

Your Answer

A

B

C

D

E

Global Stats

Let the first number = x, then we have (x, x+1) coordinate, (x+2, x+3) coordinates.
Target question=> A line is formed by connecting the coordinate, what would be the slope of the line?
$$Slope=\frac{\triangle y}{\triangle x}=\frac{y2-y1}{x2-x1}$$
Statement 1: Except for the first number, the sequence of numbers is formed by doubling the previous number and then subtracting 1.
Therefore, considering the first 4 numbers for (x1,y1) and (x2,y2) coordinates.
[x, (2x-1)] and [(4x-3), (8x-7)]
x1=x, x2=4x-3, y1=2x-1, y2=8x-7
$$Therefore,\ slope\ \left(m\right)=\frac{\left(8x-7\right)-\left(2x-1\right)}{\left(4x-3\right)-x}$$ $$=\frac{8x-7-2x+1}{4x-3-x}=\frac{6x-6}{3x-3}$$
$$=\frac{2\left(3x-3\right)}{3x-3}=2$$
Statement 1 is SUFFICIENT

Statement 2: The first number in the sequence is 3.
This does not tell us how the sequence is formed and we do not know if it is consecutive or not. Statement 2 is NOT SUFFICIENT.
Since only statement 1 is SUFFICIENT, then the correct answer is option A.