A certain movie star's salary for each film she makes consists of a fixed amount, along with a percentage of the gross

This topic has expert replies
Legendary Member
Posts: 1486
Joined: 01 Mar 2018
Followed by:2 members

Timer

00:00

Your Answer

A

B

C

D

E

Global Stats

A certain movie star's salary for each film she makes consists of a fixed amount, along with a percentage of the gross revenue the film generates. In her last two roles, the star made \(\$32\) million on a film that grossed \(\$100\) million, and \(\$24\) million on a film that grossed \(\$60\) million. If the star wants to make at least \(\$40\) million on her next film, what is the minimum amount of gross revenue the film must generate?

A \(\$110\) million
B \(\$120\) million
C \(\$130\) million
D \(\$140\) million
E \(\$150\) million

Answer: D

Source: Manhattan GMAT

GMAT/MBA Expert

User avatar
GMAT Instructor
Posts: 15878
Joined: 08 Dec 2008
Location: Vancouver, BC
Thanked: 5254 times
Followed by:1267 members
GMAT Score:770
Gmat_mission wrote:
Sun Sep 19, 2021 1:11 pm
A certain movie star's salary for each film she makes consists of a fixed amount, along with a percentage of the gross revenue the film generates. In her last two roles, the star made \(\$32\) million on a film that grossed \(\$100\) million, and \(\$24\) million on a film that grossed \(\$60\) million. If the star wants to make at least \(\$40\) million on her next film, what is the minimum amount of gross revenue the film must generate?

A \(\$110\) million
B \(\$120\) million
C \(\$130\) million
D \(\$140\) million
E \(\$150\) million

Answer: D

Source: Manhattan GMAT
Let F = the fixed amount the star receives for a movie
Let p = the percentage of the gross revenue the star receives for a movie

The star made $32 million on a film that grossed $100 million
So, we can write: F + (p/100)(100) = 32 [we'll assume that 100 and 32 represent 100 million and 32 million]

The star made $24 million on a film that grossed $60 million
So, we can write: F + (p/100)(60) = 24

We now have:
F + (p/100)(100) = 32
F + (p/100)(60) = 24

Subtract the bottom equation from the top equation to get: (p/100)(100) - (p/100)(60) = 8
Factor to get: (p/100)[100 - 60] = 8
Simplify to get: (p/100)[40] = 8
Multiply both sides by 100 to get: 40p = 800
Solve: p = 20

Now that we know the value of p, we can find the value of F
Take F + (p/100)(100) = 32 and replace p with 20 to get: F + (20/100)(100) = 32
Simplify: F + 20 = 32
So, F = 12

So, the star receives 12 million (fixed) PLUS 20% of the gross revenue

If the star wants to make at least $40 million on her next film, what is the minimum amount of gross revenue the film must generate?
Let x = gross revenue the film must generate
We can write: 12 + 20% of x = 40
Rewrite as: 12 + 0.2x = 40
Subtract 12 from both sides: 0.2x = 28
Solve: x = 140 (million)

Answer: D

Cheers,
Brent
Brent Hanneson - Creator of GMATPrepNow.com
Image