
Take advantage of our featured Black Friday/Cyber Monday deals
LEARN MORE 
Take advantage of our featured Black Friday/Cyber Monday deals
LEARN MORE
Breaking Down a GMATPrep Consecutive Integer Problem
This week, were going to talk about what to know for consecutive integer problems, and how to recognize what to do on future problems of the same type.
This one is from GMATPrep. Set your timer for 2 minutes. and GO!
If n is a positive integer and r is the remainder when [pmath]n^2 [/pmath] 1is divided by 8, what is the value of r?(1) n is odd.
(2) n is not divisible by 8.
The first thing youll probably notice: I didnt include the answer choices. The five Data Sufficiency answer choices are always the same, so we should have those memorized. If you dont have them memorized yet, add this to your to do list.
Just in case, here are the five choices (in casual language, not official language):
(A) statement 1 works but statement 2 does not work(B) statement 2 works but statement 1 does not work
(C) the statements do NOT work alone, but they DO work together
(D) each statement works by itself
(E) nothing works, not even using them together
Okay, now that weve got that out of the way, lets tackle this problem!
This ones a theory question; theyre asking us about the concept of consecutive integers (as opposed to asking us to do more straightforward calculations with consecutive integers). And theyre not even nice enough to tell us that this is about consecutive integers! We have to figure that out or, even better, recognize it.
In this case, we have two variables, n and r, and are being asked to find the value of r. My task is to determine whether I can find one definitive value for r. If I can, the information is sufficient. If I cant find any value, or I can find more than 1 value, then the information is not sufficient.
First, Ill be ahead of the game if Im able to recognize that [pmath]n^2 [/pmath] 1 is just another way of saying (n+1)(n1). The problem also talks about the integer n; put those together and weve got (n1), n, and (n+1), or three consecutive integers. Add [pmath]n^2[/pmath] 1 to your list of Unscramble the Code rephrasings; seeing this one should make you think this might be about consecutive integers! Especially if the integer n is also floating around in the problem.
When youre studying a problem and see something like [pmath]n^2[/pmath] 1, and you dont recognize any special significance to that term, go back over the problem again carefully and figure it out. Use your books and online resources to help you but figure out the significance of that thing. What concept are they really talking about here? Next time, maybe youll actually just be able to recognize it right when you see it.
Okay, so now we know that something is going on with consecutive integers here. Lets figure out what it is. Also, keep in mind that the smallest possible value for n is 1 (because the question stem tells us that n is a positive integer).
The question is asking us to take the first and third consecutive integers and multiply them together, then divide by 8 and see what the remainder, r, is.
(1) n is odd.
Hmm. If n is odd, what else can I figure out? Well, n1 and n+1 must both be even. Im supposed to multiply those two even numbers together, so whatever the result is, it must be divisible by 2. Actually, it must also be divisible by 4, because each of the two numbers is separately divisible by 2. In other words, the product (n+1)(n1) has at least two factors of 2 so its divisible by 4.
But the problem asks us about 8, so I guess this isnt enough information. Maybe Ill just explore things a little bit further, though
So, we could have 0, 1, 2 as our three consecutive integers. In that case the product of 0 and 2 is 0. 0/8 = 0 with a remainder of 0. For this particular case, r=0.
Whats my next possibility? 2, 3, 4. The product of 2 and 4 is 8 and 8/8 = 1 with a remainder of 0. For this particular case, r=0 again. Thats interesting.
Whats my next possibility? 4, 5, 6. The product of 4 and 6 is 24 and 24/8 = 3 with a remainder of 0. For this particular case, r=0 yet again! All right. Is this a pattern or did I just get lucky that the first three all gave the same remainder?
What have I been doing? Ive been taking two consecutive even integers and multiplying them together, then dividing by 8. The two starting integers are each divisible by 2, as I figured out before oh, and heres the new thing! Every other even integer, by definition, is a multiple of 4, not just a multiple of 2. 0, 2, 4, 6, 8, 10, 12 starting with zero, every other one is a multiple of 4. So, whenever I multiply two consecutive even integers, one of them has to be a multiple of 4.
What does that mean for the product? The product has to contain three 2's as factors, not just two 2's. The product will gain at least one 2 from the plain even integer and the product will gain at least two 2s from the multiple of 4 even integer. That means the product must be a multiple of 8! So, whenever I divide by 8, Im going to have a remainder of zero. Bingo! Statement 1 is sufficient. Eliminate answers B, C, and E.
I have another thing to add to my Unscramble the Code rephrasing list: When n is odd, [pmath]n^2[/pmath] 1 must be divisible by 8. (Bonus question: is this also true when n is even? Try it out and check the end of the article for the answer.) Next time I see something like this, I can just recognize it!
Moving on to statement 2:
(2) n is not divisible by 8.
Hmm. The middle integer of my three consecutive integers is not divisible by 8. What are some possibilities?
I can reuse my first possibility from statement 1: 0, 1, 2. When we tested this case before, the remainder, r, was zero.
Whats the next thing I can try? 1, 2, 3. (Note: make sure to use whatevers possible next, NOT simply what we used for the previous statement. The previous statement had different parameters.) So, the product of 1 and 3 is 3, and 3/8 is... 0 remainder 3.r= 3.
Great! I have (at least) two different possible values for r, so I know this statement is insufficient. Eliminate answer D.
The correct answer is A.
Finally, youve got homework! Set your timer for two minutes again, open up your Official Guide 12^{th} Edition, and do problem #170 in the data sufficiency section. What are the similarities? What are the differences? In what ways, specifically, is problem #170 harder than the one we just tried above? (Spoiler alert: If you dont want a hint about how to do the problem, then dont read the takeaways below till after youve tried it!)
Key Takeaways for Solving Consecutive Integer Problems:
(1) They can test you on a concept without naming that concept. Be able to recognize a consecutive integer problem in disguise. The form [pmath]n^2[/pmath] 1 is probably the most common indicator and [pmath]n^3[/pmath] n is another very common indicator because [pmath]n^3[/pmath] n = n([pmath]n^2[/pmath] 1 ) = n(n+1)(n1).
(2) Also be able to recognize some of the common useful pieces of information that might be given on consecutive integer problems. Knowing something as seemingly simple as whether certain terms are even or odd can make a big difference, especially if the question deals with divisibility or remainders.
(3) If you do the figuring out work while youre studying, you will save yourself a ton of time and mental effort on the test. You may be able to figure out a decent proportion of this stuff during the test, but youll go a lot further if you study how to recognize it in the first place.
Answer to bonus question: No, [pmath]n^2[/pmath] 1 does not have to be divisible by 8 when n is even. In fact, it will never be divisible by 8. If n is even, then both n+1 and n1 are odd. Odd numbers never have 2 as factors, and we need three 2s in order for something to be divisible by 8.
* GMATPrep questions courtesy of the Graduate Management Admissions Council. Usage of this question does not imply endorsement by GMAC.
Recent Articles
 Plan B for Your MBA Applications: Five Things to Think About
 How to Tackle One of the Hardest MBA Essay Questions in Three Steps
 Personal MBA Coach Interview with Laurel Grodman, Managing Director of Admissions at Yale SOM
 Focus on Fit When Choosing Which MBA Programs to Target
 Congrats on Submitting Your MBA Application – What to Do Next (Part 1)
Archive
 November 2020
 October 2020
 September 2020
 August 2020
 July 2020
 June 2020
 May 2020
 April 2020
 March 2020
 February 2020
 January 2020
 December 2019
 November 2019
 October 2019
 September 2019
 August 2019
 July 2019
 June 2019
 May 2019
 April 2019
 March 2019
 February 2019
 January 2019
 December 2018
 November 2018
 October 2018
 September 2018
 August 2018
 July 2018
 June 2018
 May 2018
 April 2018
 March 2018
 February 2018
 January 2018
 December 2017
 November 2017
 October 2017
 September 2017
 August 2017
 July 2017
 June 2017
 May 2017
 April 2017
 March 2017
 February 2017
 January 2017
 December 2016
 November 2016
 October 2016
 September 2016
 August 2016
 July 2016
 June 2016
 May 2016
 April 2016
 March 2016
 February 2016
 January 2016
 December 2015
 November 2015
 October 2015
 September 2015
 August 2015
 July 2015
 June 2015
 May 2015
 April 2015
 March 2015
 February 2015
 January 2015
 December 2014
 November 2014
 October 2014
 September 2014
 August 2014
 July 2014
 June 2014
 May 2014
 April 2014
 March 2014
 February 2014
 January 2014
 December 2013
 November 2013
 October 2013
 September 2013
 August 2013
 July 2013
 June 2013
 May 2013
 April 2013
 March 2013
 February 2013
 January 2013
 December 2012
 November 2012
 October 2012
 September 2012
 August 2012
 July 2012
 June 2012
 May 2012
 April 2012
 March 2012
 February 2012
 January 2012
 December 2011
 November 2011
 October 2011
 September 2011
 August 2011
 July 2011
 June 2011
 May 2011
 April 2011
 March 2011
 February 2011
 January 2011
 December 2010
 November 2010
 October 2010
 September 2010
 August 2010
 July 2010
 June 2010
 May 2010
 April 2010
 March 2010
 February 2010
 January 2010
 December 2009
 November 2009
 October 2009
 September 2009
 August 2009