Is \(zp\) negative?
(1) \(pz^4 < 0\)
(2) \(p + z^4 = 14\)
Answer: E
Source: Official Guide
Solve 700-Level Algebra Qs In 90 Secs!
Master 700-level Inequalities and Absolute Value Questions
Attend this free GMAT Algebra Webinar and learn how to master the most challenging Inequalities and Absolute Value problems with ease.
Is \(zp\) negative?
This topic has expert replies
-
- Legendary Member
- Posts: 1622
- Joined: Thu Mar 01, 2018 7:22 am
- Followed by:2 members
GMAT/MBA Expert
- [email protected]
- GMAT Instructor
- Posts: 16201
- Joined: Mon Dec 08, 2008 6:26 pm
- Location: Vancouver, BC
- Thanked: 5254 times
- Followed by:1268 members
- GMAT Score:770
Timer
00:00
Your Answer
A
B
C
D
E
Global Stats
Target question: Is zp negative?Gmat_mission wrote: ↑Wed Feb 23, 2022 8:32 amIs \(zp\) negative?
(1) \(pz^4 < 0\)
(2) \(p + z^4 = 14\)
Answer: E
Source: Official Guide
Statement 1: p(z^4) < 0
This statement doesn't FEEL sufficient, so I'll TEST some values.
There are several values of p and z that satisfy statement 1. Here are two:
Case a: p = -1 and z = 1. In this case, pz = (-1)(1) = -1. So, pz IS negative.
Case b: p = -1 and z = -1. In this case, pz = (-1)(-1) = 1. So, pz is NOT negative.
Since we cannot answer the target question with certainty, statement 1 is NOT SUFFICIENT
Statement 2: p + (z^4) = 14
There are several values of p and z that satisfy statement 1. Here are two:
Case a: p = -2 and z = 2. In this case, pz = (-2)(2) = -4. So, pz IS negative.
Case b: p = -2 and z = -2. In this case, pz = (-2)(-2) = 4. So, pz is NOT negative.
Since we cannot answer the target question with certainty, statement 2 is NOT SUFFICIENT
Statements 1 and 2 combined
There are still several values of p and z that satisfy BOTH statements. Here are two:
Case a: p = -2 and z = 2. In this case, pz = (-2)(2) = -4. So, pz IS negative.
Case b: p = -2 and z = -2. In this case, pz = (-2)(-2) = 4. So, pz is NOT negative.
Since we cannot answer the target question with certainty, the combined statements are NOT SUFFICIENT
Answer: E