In how many ways can one divide 12 different chocolate bars into four packs of 3 bars each?
A) 12!/3!4!
B) 12!/(4!)^2
C) 12!/4!(3!)^4
D) 12!/4!(4!)^3
E) 12!/4!(3!4!)
OA C
Source: Veritas Prep
Solve 700-Level Algebra Qs In 90 Secs!
Master 700-level Inequalities and Absolute Value Questions
Attend this free GMAT Algebra Webinar and learn how to master the most challenging Inequalities and Absolute Value problems with ease.
In how many ways can one divide 12 different chocolate bars into four packs of 3 bars each?
This topic has expert replies
-
- Moderator
- Posts: 7187
- Joined: Thu Sep 07, 2017 4:43 pm
- Followed by:23 members
Timer
00:00
Your Answer
A
B
C
D
E
Global Stats
GMAT/MBA Expert
- [email protected]
- GMAT Instructor
- Posts: 16201
- Joined: Mon Dec 08, 2008 6:26 pm
- Location: Vancouver, BC
- Thanked: 5254 times
- Followed by:1268 members
- GMAT Score:770
Let the 4 boys be: A, B, C and DBTGmoderatorDC wrote: ↑Wed Jun 01, 2022 4:18 amIn how many ways can one divide 12 different chocolate bars into four packs of 3 bars each?
A) 12!/3!4!
B) 12!/(4!)^2
C) 12!/4!(3!)^4
D) 12!/4!(4!)^3
E) 12!/4!(3!4!)
OA C
Source: Veritas Prep
Choose 3 chocolate bars for boy A. Since the order in which we can select the 3 bars doesn't matter, we can use combination.
We can select 3 bars from 12 bars in 12C3 ways.
12C3 = (12)(11)(10)/(3)(2)(1)
Choose 3 chocolate bars for boy B. There are now 9 bars remaining.
We can select 3 bars from 9 bars in 9C3 ways.
9C3 = (9)(8)(7)/(3)(2)(1)
Choose 3 chocolate bars for boy C. There are now 6 bars remaining.
We can select 3 bars from 6 bars in 6C3 ways.
9C3 = (6)(5)(4)/(3)(2)(1)
Choose 3 chocolate bars for boy D. There are now 3 bars remaining.
We can select 3 bars from 3 bars in 3C3 ways.
9C3 = (3)(2)(1)/(3)(2)(1)
By the Fundamental Counting Principle (FCP), we can complete all 4 stages (and thus distribute all 12 bars) in [(12)(11)(10)/(3)(2)(1)][(9)(8)(7)/(3)(2)(1)][(6)(5)(4)/(3)(2)(1)][(3)(2)(1)/(3)(2)(1)]
Simplify product to get: 12!/(3!)⁴
Answer: C