## $$\dfrac{2\frac35-1\frac23}{\frac23-\frac35}$$

##### This topic has expert replies
Legendary Member
Posts: 1240
Joined: 01 Mar 2018
Followed by:2 members

### $$\dfrac{2\frac35-1\frac23}{\frac23-\frac35}$$

by Gmat_mission » Thu Sep 24, 2020 2:24 am

00:00

A

B

C

D

E

## Global Stats

$$\dfrac{2\frac35-1\frac23}{\frac23-\frac35}$$

(A) 16
(B) 14
(C) 3
(D) 1
(E) -1

Source: Official Guide

Legendary Member
Posts: 2214
Joined: 02 Mar 2018
Followed by:4 members

### Re: $$\dfrac{2\frac35-1\frac23}{\frac23-\frac35}$$

by deloitte247 » Sat Sep 26, 2020 6:18 pm
$$\frac{2\frac{3}{5}-1\frac{2}{3}}{\frac{2}{3}-\frac{3}{5}}=\frac{\frac{13}{5}-\frac{5}{3}}{\frac{2}{3}-\frac{3}{5}}$$
$$=\frac{\frac{39-25}{15}}{\frac{10-9}{15}}$$
$$=\frac{\frac{14}{15}}{\frac{1}{15}}$$
$$=\frac{14}{15}\cdot\frac{15}{1}=14$$

### GMAT/MBA Expert

GMAT Instructor
Posts: 6299
Joined: 25 Apr 2015
Location: Los Angeles, CA
Thanked: 43 times
Followed by:25 members

### Re: $$\dfrac{2\frac35-1\frac23}{\frac23-\frac35}$$

by [email protected] » Thu Oct 01, 2020 10:01 am
Gmat_mission wrote:
Thu Sep 24, 2020 2:24 am
$$\dfrac{2\frac35-1\frac23}{\frac23-\frac35}$$

(A) 16
(B) 14
(C) 3
(D) 1
(E) -1

Source: Official Guide
Solution:

We want to rid both the numerator and denominator of fractions. Multiplying the expression by 15/15, we have:

[(30 + 9) - (15 + 10)] / (10 - 9) = (39 - 25)/1 = 14