For nonnegative integers \(a, b,\) and \(c,\) what is the value of the product \(abc?\)
(1) \(ab=bc\)
(2) \(a\ne c\)
Answer: C
Source: Veritas Prep
Solve 700-Level Algebra Qs In 90 Secs!
Master 700-level Inequalities and Absolute Value Questions
Attend this free GMAT Algebra Webinar and learn how to master the most challenging Inequalities and Absolute Value problems with ease.
For nonnegative integers \(a, b,\) and \(c,\) what is the value of the product \(abc?\)
This topic has expert replies
GMAT/MBA Expert
- [email protected]
- GMAT Instructor
- Posts: 16201
- Joined: Mon Dec 08, 2008 6:26 pm
- Location: Vancouver, BC
- Thanked: 5254 times
- Followed by:1268 members
- GMAT Score:770
Timer
00:00
Your Answer
A
B
C
D
E
Global Stats
Target question: What is the value of the product abc?
Statement 1: ab = bc
Let's TEST some values.
There are several values of a, b and c that satisfy the condition that ab = bc. Here are two:
Case a: a = 0, b = 0 and c = 0. In this case, the answer to the target question is abc = (0)(0)(0) = 0
Case b: a = 1, b = 1 and c = 1. In this case, the answer to the target question is abc = (1)(1)(1) = 1
Since we cannot answer the target question with certainty, statement 1 is NOT SUFFICIENT
Statement 2: a≠c
Let's TEST some values.
Since we aren't told anything about the value of b, we cannot answer the target question with certainty.
So, statement 2 is NOT SUFFICIENT
Statements 1 and 2 combined
Statement 1 tells us that ab = bc
Rewrite as: ab - bc = 0
Factor to get: b(a - c) = 0
This means that EITHER b = 0 OR (a - c) = 0
Statement 2 tells us that a≠c
So, it CANNOT be the case that a-c = 0
This means it MUST be the case that b = 0
If b = 0, then abc = 0
The answer to the target question is abc = 0
Since we can answer the target question with certainty, the combined statements are SUFFICIENT
Answer: C
Cheers,
Brent