An office comprised of eight employees is planning to have a foosball game. A matchup consists of four players, split into pairs. If any employee can be paired up with any other employee, then how many unique matchups result?
(A) 70
(B) 210
(C) 280
(D) 336
(E) 420
OA B
Source: Magoosh
An office comprised of eight employees is planning to have a foosball game. A matchup consists of four players, split in
This topic has expert replies

 Moderator
 Posts: 6242
 Joined: 07 Sep 2017
 Followed by:20 members
Timer
00:00
Your Answer
A
B
C
D
E
Global Stats
GMAT/MBA Expert
 [email protected]
 GMAT Instructor
 Posts: 15949
 Joined: 08 Dec 2008
 Location: Vancouver, BC
 Thanked: 5254 times
 Followed by:1267 members
 GMAT Score:770
Take the task of creating a matchup and break it into stages.BTGmoderatorDC wrote: ↑Thu Nov 25, 2021 12:18 amAn office comprised of eight employees is planning to have a foosball game. A matchup consists of four players, split into pairs. If any employee can be paired up with any other employee, then how many unique matchups result?
(A) 70
(B) 210
(C) 280
(D) 336
(E) 420
OA B
Source: Magoosh
Stage 1: Select 4 employees
Since the order in which we select the employees does not matter, we can use combinations.
We can select 4 employees from 8 employees in 8C5 ways (70 ways)
So, we can complete stage 1 in 70 ways
Stage 2: Divide the 4 selected employees into 2 teams
Let's say the 4 selected employees are A, B, C, D
A nice way to determine the number of ways to divide the 4 employees into 2 teams is to find a partner for one person.
For example, let's find a partner for employee A.
NOTE: once we choose a partner for employee A then, by default, the remaining two two employees will be paired together.
In how many ways can we select a partner for employee A? Well, A can be paired with B, C or D
So, we can complete stage 2 in 3 ways
ASIDE: The 3 pairings are:
AB vs CD
AC vs BD
AD vs BC
By the Fundamental Counting Principle (FCP), we can complete the 2 stages (and thus create a matchup) in (70)(3) ways (= 210 ways)
Answer: B
Note: the FCP can be used to solve the MAJORITY of counting questions on the GMAT. For more information about the FCP, watch this video: https://www.gmatprepnow.com/module/gmat ... /video/775
You can also watch a demonstration of the FCP in action: https://www.gmatprepnow.com/module/gmat ... /video/776
Then you can try solving the following questions:
EASY
 https://www.beatthegmat.com/whatshould ... 67256.html
 https://www.beatthegmat.com/countingpro ... 44302.html
 https://www.beatthegmat.com/pickinga5 ... 73110.html
 https://www.beatthegmat.com/permutation ... 57412.html
 https://www.beatthegmat.com/simpleonet270061.html
MEDIUM
 https://www.beatthegmat.com/combinatoric ... 73194.html
 https://www.beatthegmat.com/arabianhors ... 50703.html
 https://www.beatthegmat.com/subsetspro ... 73337.html
 https://www.beatthegmat.com/combinatoric ... 73180.html
 https://www.beatthegmat.com/digitsnumberst270127.html
 https://www.beatthegmat.com/doubtonsep ... 71047.html
 https://www.beatthegmat.com/combinatoric ... 67079.html
DIFFICULT
 https://www.beatthegmat.com/wonderfulp ... 71001.html
 https://www.beatthegmat.com/permutation ... 73915.html
 https://www.beatthegmat.com/permutationt122873.html
 https://www.beatthegmat.com/notwoladie ... 75661.html
 https://www.beatthegmat.com/combinationst123249.html
Cheers,
Brent