Is the number of workers required to create w1 widgets at r1 widgets per minute less than the number of workers required to create w2 widgets at r2 widgets per minute?
(1) w1 is 20 less than w2.
(2) r1 is 20 less than r2.
OA E
Source: Princeton Review
Is the number of workers required to create w1 widgets at r1
This topic has expert replies

 Moderator
 Posts: 7187
 Joined: Thu Sep 07, 2017 4:43 pm
 Followed by:23 members
Timer
00:00
Your Answer
A
B
C
D
E
Global Stats
 fskilnik@GMATH
 GMAT Instructor
 Posts: 1449
 Joined: Sat Oct 09, 2010 2:16 pm
 Thanked: 59 times
 Followed by:33 members
Timer
00:00
Your Answer
A
B
C
D
E
Global Stats
Excellent opportunity for UNITS CONTROL, one of the most powerful tools of our method!During a certain production time, is the number of workers required to create w1 widgets at the rate of r1 widgets per minute per worker less than the number of workers required to create w2 widgets at the rate of r2 widgets per minute per worker?
(1) w1 is 20 less than w2.
(2) r1 is 20 less than r2.
$$N \ge 1\,\,{\mathop{\rm int}} \,\,{\rm{workers}}\,\,\,\,\,\, \to \,\,\,\,\,{w_1}\,\,{\rm{widgets}}\,\,\,\left( {{{1\,\,{\rm{minute}}} \over {N \cdot {r_1}\,\,{\rm{widgets}}}}} \right)\,\,\,\,\, = \,\,\,\,{{{w_1}\,\,} \over {N \cdot {r_1}\,\,}}\,\,\,{\rm{minutes}}$$
$$M \ge 1\,\,{\mathop{\rm int}} \,\,{\rm{workers}}\,\,\,\,\,\, \to \,\,\,\,\,{w_2}\,\,{\rm{widgets}}\,\,\,\left( {{{1\,\,{\rm{minute}}} \over {M \cdot {r_2}\,\,{\rm{widgets}}}}} \right)\,\,\,\,\, = \,\,\,\,{{{w_2}\,\,} \over {M \cdot {r_2}\,\,}}\,\,\,{\rm{minutes}}$$
$${{{w_1}\,\,} \over {N \cdot {r_1}\,\,}} = {{{w_2}\,\,} \over {M \cdot {r_2}\,\,}}\,\,\,\,\,\,\mathop \Leftrightarrow \limits^{{\rm{all}}\,\, \ne \,\,0} \,\,\,\,\,\,\,{N \over M} = {{{w_1} \cdot {r_2}} \over {{w_2} \cdot {r_1}}}$$
$$N\,\,\mathop < \limits^? \,\,M\,\,\,\,\,\,\,\mathop \Leftrightarrow \limits^{M\, > \,0} \,\,\,\,\,\,\,{N \over M}\,\,\mathop < \limits^? \,\,1\,\,\,\,\,\,\, \Leftrightarrow \,\,\,\,\,\,{{{w_1} \cdot {r_2}} \over {{w_2} \cdot {r_1}}}\,\,\mathop < \limits^? \,\,1\,\,\,$$
LetÂ´s BIFURCATE both statement together at once, so that we are sure the correct answer is (E):
$$\left( {1 + 2} \right)\,\,\,\left\{ \matrix{
\,{w_2} = {w_1} + 20 \hfill \cr
\,\,{r_2} = {r_1} + 20 \hfill \cr} \right.\,\,\,\,\,$$
$$\left\{ \matrix{
\,{\rm{Take}}\,\,\left( {{w_1},{w_2},{r_1},{r_2}} \right) = \left( {10,30,10,30} \right)\,\,\,\, \Rightarrow \,\,\,\,\,\left\langle {{\rm{NO}}} \right\rangle \,\, \hfill \cr
\,{\rm{Take}}\,\,\left( {{w_1},{w_2},{r_1},{r_2}} \right) = \left( {1,21,10,30} \right)\,\,\,\, \Rightarrow \,\,\,\,\,\left\langle {{\rm{YES}}} \right\rangle \,\, \hfill \cr} \right.$$
This solution follows the notations and rationale taught in the GMATH method.
Regards,
Fabio.
Fabio Skilnik :: GMATH method creator ( Math for the GMAT)
Englishspeakers :: https://www.gmath.net
Portuguesespeakers :: https://www.gmath.com.br
Englishspeakers :: https://www.gmath.net
Portuguesespeakers :: https://www.gmath.com.br