270310_RC1

This topic has expert replies
Master | Next Rank: 500 Posts
Posts: 371
Joined: Tue Apr 29, 2008 10:16 am
Thanked: 6 times
Followed by:1 members

270310_RC1

by vaivish » Sat Mar 27, 2010 10:58 am
Passage 1
Caffeine, the stimulant in coffee, has been called
"the most widely used psychoactive substance on Earth ."
Synder, Daly and Bruns have recently proposed that
caffeine affects behavior by countering the activity in
(5) the human brain of a naturally occurring chemical called
adenosine. Adenosine normally depresses neuron firing
in many areas of the brain. It apparently does this by
inhibiting the release of neurotransmitters, chemicals
that carry nerve impulses from one neuron to the next.
(10) Like many other agents that affect neuron firing,
adenosine must first bind to specific receptors on
neuronal membranes. There are at least two classes
of these receptors, which have been designated A1 and
A2. Snyder et al propose that caffeine, which is struc-
(15) turally similar to adenosine, is able to bind to both types
of receptors, which prevents adenosine from attaching
there and allows the neurons to fire more readily than
they otherwise would.
For many years, caffeine's effects have been attri-
(20) buted to its inhibition of the production of phosphodi-
esterase, an enzyme that breaks down the chemical
called cyclic AMP.A number of neurotransmitters exert
their effects by first increasing cyclic AMP concentra-
tions in target neurons. Therefore, prolonged periods at
(25) the elevated concentrations, as might be brought about
by a phosphodiesterase inhibitor, could lead to a greater
amount of neuron firing and, consequently, to behav-
ioral stimulation. But Snyder et al point out that the
caffeine concentrations needed to inhibit the production
(30) of phosphodiesterase in the brain are much higher than
those that produce stimulation. Moreover, other com-
pounds that block phosphodiesterase's activity are not
stimulants.
To buttress their case that caffeine acts instead by pre-
(35) venting adenosine binding, Snyder et al compared the
stimulatory effects of a series of caffeine derivatives with
their ability to dislodge adenosine from its receptors in
the brains of mice. "In general," they reported, "the
ability of the compounds to compete at the receptors
(40) correlates with their ability to stimulate locomotion in
the mouse; i.e., the higher their capacity to bind at the
receptors, the higher their ability to stimulate locomo-
tion." Theophylline, a close structural relative of caffeine
and the major stimulant in tea, was one of the most
(45) effective compounds in both regards.
There were some apparent exceptions to the general
correlation observed between adenosine-receptor binding
and stimulation. One of these was a compound called
3-isobuty1-1-methylxanthine(IBMX), which bound very
(50) well but actually depressed mouse locomotion. Snyder
et al suggest that this is not a major stumbling block to
their hypothesis. The problem is that the compound has
mixed effects in the brain, a not unusual occurrence with
psychoactive drugs. Even caffeine, which is generally
(55) known only for its stimulatory effects, displays this
property, depressing mouse locomotion at very low
concentrations and stimulating it at higher ones.

1. The primary purpose of the passage is to
(A) discuss a plan for investigation of a phenomenon that is not yet fully understood
(B) present two explanations of a phenomenon and reconcile the differences between them
(C) summarize two theories and suggest a third theory that overcomes the problems encountered in the first two
(D) describe an alternative hypothesis and provide evidence and arguments that support it
(E) challenge the validity of a theory by exposing the inconsistencies and contradictions in it

2. According so Snyder et al, caffeine differs from adenosine in that caffeine
(A) stimulates behavior in the mouse and in humans, whereas adenosine stimulates behavior in humans only
(B) has mixed effects in the brain, whereas adenosine has only a stimulatory effect
(C) increases cyclic AMP concentrations in target neurons, whereas adenosine decreases such concentrations
(D) permits release of neurotransmitters when it is bound to adenosine receptors, whereas adenosine inhibits such release
(E) inhibits both neuron firing and the production of phosphodiesterase when there is a sufficient concentration in the brain, whereas adenosine inhibits only neuron firing

3. In response to experimental results concerning IBMX, Snyder et al contended that it is not uncommon for psychoactive drugs to have
(A) mixed effects in the brain
(B) inhibitory effects on enzymes in the brain
(C) close structural relationships with caffeine
(D) depressive effects on mouse locomotion
(E) the ability to dislodge caffeine from receptors in the brain
Explanation:
A is the best answer. The effects of IBMX are discussed in the last paragraph of the passage. IBMX apparently binds to adenosine-specific receptors on neuronal membranes, but, in contrast to the other caffeine derivatives that Snyder et al experimented with, IBMX depresses rather than stimulates mouse locomotion. Snyder et al respond to this experimental result by stating that IBMX has "mixed effects in the brain, a not unusual occurrence with psychoactive drugs"(line 104-107)

4. According to Snyder et al, all of the following compounds can bind to specific receptors in the brain EXCEPT
(A) IBMX
(B) caffeine
(C) adenosine
(D) theophylline
(E) phosphodiesterase
Explanation:
E is the best answer. This question asks you to identify which compound, according to Snyder et al, does NOT bind to specific receptors in the brain. Phosphodiesterase, identified as an "enzyme that breaks down the chemical called cyclic AMP"(lines 40-42), is the only compound that is not identified as one that binds to specific receptors in the brain.

5. Snyder et al suggest that caffeine's ability to bind to A1 and A2 receptors can be at least partially attributed to which of the following?
(A) The chemical relationship between caffeine and phosphodiesterase
(B) The structural relationship between caffeine and adenosine
(C) The structural similarity between caffeine and neurotransmitters
(D) The ability of caffeine to stimulate behavior
(E) The natural occurrence of caffeine and adenosine in the brain
Explanation:
B is the best answer.
This question asks you to identify information that is suggested rather than directly stated in the passage. To answer it, first look for the location in the passage of the information specified in the question. The A1 and A2 receptors are mentioned in lines 23-26. Lines 27-35 go on to describe Snyder et al's hypothesis about the effects of caffeine on behavior. They propose that caffeine, "which is structurally similar to adenosine," is able to bind to A1 and A2 receptors in the brain, the same receptors that adenosine normally binds to. Thus, the passage suggests that the structural relationship between caffeine and adenosine may be partially responsible for caffeine's ability to bind to A1 and A2 receptors.

6. The author quotes Snyder et al in lines 38-43 most probably in order to
(A) reveal some of the assumptions underlying their theory
(B) summarize a major finding of their experiments
(C) point out that their experiments were limited to the mouse
(D) indicate that their experiments resulted only in general correlations
(E) refute the objections made by supporters of the older theory
Explanation:
B is the best answer.
This question asks you to identify the function of a quotation in the third paragraph of the passage. The third paragraph provides evidence for Snyder et al's hypothesis by discussing experiments they conducted on mice. The quotation in lines 74-84 "summarizes" the findings of these experiments. Snyder et al found that a number of caffeine derivatives are able to bind to specific receptors in the brains of mice just as adenosine does, and that the derivatives that are most successful at stimulating locomotion are also the most successful in competing with adenosine in binding at the receptors. This finding is "major" in that it supports their hypothesis that the simulative effects of caffeine are a result of its ability to compete with adenosine.



I got this passages with the explanation of the anwers inbuilt in the questions. Hope this should not create any problems for people. here

User avatar
MBA Student
Posts: 403
Joined: Tue Dec 22, 2009 7:32 pm
Thanked: 98 times
Followed by:22 members

by fibbonnaci » Mon Mar 29, 2010 10:41 pm
where are the explanations for Q 1 and 2.

Here is my take:
Q1. D
Q2. D