• Economist Test Prep
    Free Trial & Practice Exam
    BEAT THE GMAT EXCLUSIVE

    Available with Beat the GMAT members only code

    MORE DETAILS
    Economist Test Prep
  • Varsity Tutors
    Award-winning private GMAT tutoring
    Register now and save up to $200

    Available with Beat the GMAT members only code

    MORE DETAILS
    Varsity Tutors
  • PrepScholar GMAT
    5 Day FREE Trial
    Study Smarter, Not Harder

    Available with Beat the GMAT members only code

    MORE DETAILS
    PrepScholar GMAT
  • Veritas Prep
    Free Veritas GMAT Class
    Experience Lesson 1 Live Free

    Available with Beat the GMAT members only code

    MORE DETAILS
    Veritas Prep
  • EMPOWERgmat Slider
    1 Hour Free
    BEAT THE GMAT EXCLUSIVE

    Available with Beat the GMAT members only code

    MORE DETAILS
    EMPOWERgmat Slider
  • Target Test Prep
    5-Day Free Trial
    5-day free, full-access trial TTP Quant

    Available with Beat the GMAT members only code

    MORE DETAILS
    Target Test Prep
  • Magoosh
    Magoosh
    Study with Magoosh GMAT prep

    Available with Beat the GMAT members only code

    MORE DETAILS
    Magoosh
  • Kaplan Test Prep
    Free Practice Test & Review
    How would you score if you took the GMAT

    Available with Beat the GMAT members only code

    MORE DETAILS
    Kaplan Test Prep
  • e-gmat Exclusive Offer
    Get 300+ Practice Questions
    25 Video lessons and 6 Webinars for FREE

    Available with Beat the GMAT members only code

    MORE DETAILS
    e-gmat Exclusive Offer

If p is the product of the integers from 1 to 30,

This topic has 7 expert replies and 0 member replies
vikkimba17 Junior | Next Rank: 30 Posts Default Avatar
Joined
05 Nov 2015
Posted:
16 messages

If p is the product of the integers from 1 to 30,

Post Thu Mar 23, 2017 11:46 pm
If p is the product of the integers from 1 to 30,
inclusive, what is the greatest integer k for which 3k is
a factor of p ?
(A) 10
(B) 12
(C) 14
(D) 16
(E) 18

  • +1 Upvote Post
  • Quote
  • Flag
Need free GMAT or MBA advice from an expert? Register for Beat The GMAT now and post your question in these forums!
Top Reply
Post Fri Mar 24, 2017 5:08 am

_________________
Mitch Hunt
GMAT Private Tutor
GMATGuruNY@gmail.com
If you find one of my posts helpful, please take a moment to click on the "Thank" icon.
Available for tutoring in NYC and long-distance.
For more information, please email me at GMATGuruNY@gmail.com.

  • +1 Upvote Post
  • Quote
  • Flag
Free GMAT Practice Test How can you improve your test score if you don't know your baseline score? Take a free online practice exam. Get started on achieving your dream score today! Sign up now.

GMAT/MBA Expert

Top Reply
Post Thu Mar 30, 2017 3:36 pm
vikkimba17 wrote:
If p is the product of the integers from 1 to 30,
inclusive, what is the greatest integer k for which 3k is
a factor of p ?
(A) 10
(B) 12
(C) 14
(D) 16
(E) 18
The product of the integers from 1 to 30 inclusive is 30!. Thus, we need to determine the number of factors of 3 in 30!. To do so, we can use the following shortcut in which we divide 30 by 3 then divide the quotient (ignore any nonzero remainder) by 3, and then continue this process until we no longer get a nonzero quotient.

30/3 = 10

10/3 = 3 (we can ignore the remainder)

3/3 = 1

Since 1/3 does not produce a nonzero quotient, we can stop.

The final step is to add up our quotients; that sum represents the number of factors of 3 within 30!.

Thus, there are 10 + 3 + 1 = 14 factors of 3 within 30!.

Answer: C

_________________

Scott Woodbury Stewart Founder & CEO
GMAT Quant Self-Study Course - 500+ lessons 3000+ practice problems 800+ HD solutions
5-Day Free Trial 5-DAY FREE, FULL-ACCESS TRIAL TTP QUANT

  • +1 Upvote Post
  • Quote
  • Flag
Post Fri Mar 24, 2017 5:08 am

_________________
Mitch Hunt
GMAT Private Tutor
GMATGuruNY@gmail.com
If you find one of my posts helpful, please take a moment to click on the "Thank" icon.
Available for tutoring in NYC and long-distance.
For more information, please email me at GMATGuruNY@gmail.com.

  • +1 Upvote Post
  • Quote
  • Flag
Free GMAT Practice Test How can you improve your test score if you don't know your baseline score? Take a free online practice exam. Get started on achieving your dream score today! Sign up now.

GMAT/MBA Expert

Post Thu Mar 30, 2017 3:36 pm
vikkimba17 wrote:
If p is the product of the integers from 1 to 30,
inclusive, what is the greatest integer k for which 3k is
a factor of p ?
(A) 10
(B) 12
(C) 14
(D) 16
(E) 18
The product of the integers from 1 to 30 inclusive is 30!. Thus, we need to determine the number of factors of 3 in 30!. To do so, we can use the following shortcut in which we divide 30 by 3 then divide the quotient (ignore any nonzero remainder) by 3, and then continue this process until we no longer get a nonzero quotient.

30/3 = 10

10/3 = 3 (we can ignore the remainder)

3/3 = 1

Since 1/3 does not produce a nonzero quotient, we can stop.

The final step is to add up our quotients; that sum represents the number of factors of 3 within 30!.

Thus, there are 10 + 3 + 1 = 14 factors of 3 within 30!.

Answer: C

_________________

Scott Woodbury Stewart Founder & CEO
GMAT Quant Self-Study Course - 500+ lessons 3000+ practice problems 800+ HD solutions
5-Day Free Trial 5-DAY FREE, FULL-ACCESS TRIAL TTP QUANT

  • +1 Upvote Post
  • Quote
  • Flag
Post Thu Mar 30, 2017 5:26 pm
Hi vikkimba17,

These types of questions are based on a math concept called "prime factorization", which basically means that any integer greater than 1 is either prime OR the product of a bunch of primes.

Here's a simple example:

24 = (2)(2)(2)(3)

Now, when it comes to this question, we're asked to multiply all the integers from 1 to 30, inclusive and find the greatest integer K for which 3^K is a factor of this really big number.

Here's a simple example with a smaller product:
1 to 6, inclusive…
(1)(2)(3)(4)(5)(6)

Then numbers 1, 2, 4 and 5 do NOT have any 3's in them, so we can essentially ignore them:
3 = one 3
6 = (2)(3) = one 3
Total = two 3's

So 3^2 is the biggest "power of 3" that goes into the product of 1 to 6, inclusive.

Using that same idea, we need to find all of the 3's in the product of 1 to 30, inclusive. Here though, you have to be careful, since there are probably MORE 3's than immediately realize:

3 = one 3
6 = one 3
9 = (3)(3) = two 3s
12 = one 3
15 = one 3
18 = (2)(3)(3) = two 3s
21 = one 3
24 = one 3
27 = (3)(3)(3) = three 3s
30 = one 3

Total = 14 3's

Final Answer: C

GMAT assassins aren't born, they're made,
Rich

_________________
Contact Rich at Rich.C@empowergmat.com

  • +1 Upvote Post
  • Quote
  • Flag
Post Fri Mar 24, 2017 4:40 am
vikkimba17 wrote:
If p is the product of the integers from 1 to 30,
inclusive, what is the greatest integer k for which 3^k is
a factor of p ?
(A) 10
(B) 12
(C) 14
(D) 16
(E) 18
This question is really asking us to determine the number of 3's "hiding" in the prime factorization of p.

p = (1)(2)(3)(4)(5)(6)(7)(8)(9) . . . (27)(28)(29)(30)
= (1)(2)(3)(4)(5)(2)(3)(7)(8)(3)(3)(10)(11)(3)(4)(13)(14)(3)(5)(16)(17)(3)(3)(2)(19)(20)(3)(7)(22)(23)(3)(8)(25)(26). . . (3)(3)(3)(28)(29)(3)(10)
= (3)^14(other non-3 stuff)

Answer: C

Cheers,
Brent

_________________
Brent Hanneson – Founder of GMATPrepNow.com
Use our video course along with Beat The GMAT's free 60-Day Study Guide

Check out the online reviews of our course
Come see all of our free resources

  • +1 Upvote Post
  • Quote
  • Flag
GMAT Prep Now's comprehensive video course can be used in conjunction with Beat The GMAT’s FREE 60-Day Study Guide and reach your target score in 2 months!
Post Fri Mar 24, 2017 4:21 am
For a lengthier post describing the mechanics of such problems, see here: http://www.beatthegmat.com/mba/2011/07/20/quant-drill-prime-your-mind-for-factor-problems

_________________
Veritas Prep | GMAT Instructor

Veritas Prep Reviews
Save $100 off any live Veritas Prep GMAT Course

  • +1 Upvote Post
  • Quote
  • Flag
Enroll in a Veritas Prep GMAT class completely for FREE. Wondering if a GMAT course is right for you? Attend the first class session of an actual GMAT course, either in-person or live online, and see for yourself why so many students choose to work with Veritas Prep. Find a class now!

Best Conversation Starters

1 lheiannie07 112 topics
2 swerve 64 topics
3 LUANDATO 64 topics
4 ardz24 61 topics
5 AAPL 57 topics
See More Top Beat The GMAT Members...

Most Active Experts

1 image description Scott@TargetTestPrep

Target Test Prep

227 posts
2 image description Brent@GMATPrepNow

GMAT Prep Now Teacher

176 posts
3 image description Jeff@TargetTestPrep

Target Test Prep

168 posts
4 image description Rich.C@EMPOWERgma...

EMPOWERgmat

138 posts
5 image description GMATGuruNY

The Princeton Review Teacher

129 posts
See More Top Beat The GMAT Experts