• 1 Hour Free
BEAT THE GMAT EXCLUSIVE

Available with Beat the GMAT members only code

• 5 Day FREE Trial
Study Smarter, Not Harder

Available with Beat the GMAT members only code

• Free Practice Test & Review
How would you score if you took the GMAT

Available with Beat the GMAT members only code

• Get 300+ Practice Questions

Available with Beat the GMAT members only code

• Magoosh
Study with Magoosh GMAT prep

Available with Beat the GMAT members only code

• Award-winning private GMAT tutoring
Register now and save up to \$200

Available with Beat the GMAT members only code

• Free Trial & Practice Exam
BEAT THE GMAT EXCLUSIVE

Available with Beat the GMAT members only code

• 5-Day Free Trial
5-day free, full-access trial TTP Quant

Available with Beat the GMAT members only code

• Free Veritas GMAT Class
Experience Lesson 1 Live Free

Available with Beat the GMAT members only code

## GMAT prep - Quant question

tagged by: Brent@GMATPrepNow

This topic has 3 expert replies and 0 member replies
NadineKh Newbie | Next Rank: 10 Posts
Joined
28 Jul 2017
Posted:
5 messages

#### GMAT prep - Quant question

Wed Sep 13, 2017 8:17 am
Elapsed Time: 00:00
• Lap #[LAPCOUNT] ([LAPTIME])
I've had the following question and its answer without explanation. Could someone explain me the solution?

Thanks!

For every positive integer n, the function h(n) is defined to be the product of all the even integers from 2 to n, inclusive. If p is the smallest prime factor of h(100)+1, then p is:
A. Between 2 and 10
B. Between 10 and 20
C. Between 20 and 30
D. Between 30 and 40
E. Greater than 40

Need free GMAT or MBA advice from an expert? Register for Beat The GMAT now and post your question in these forums!

### GMAT/MBA Expert

GMATGuruNY GMAT Instructor
Joined
25 May 2010
Posted:
13352 messages
Followed by:
1779 members
Thanked:
12877 times
GMAT Score:
790
Wed Sep 13, 2017 8:19 am
Quote:
For every positive even integer n, the function h(n) is defined to be the product of all even integers from 2 to n, inclusive. If p is the smallest prime factor of h(100) + 1, the p is

A: Between 2 & 10
B: Between 10 & 20
C: Between 20 & 30
D: Between 30 & 40
E: Greater than 40
Since the difference between them is 1, h(100) and h(100)+1 are consecutive integers.
Consecutive integers are COPRIMES: they share no factors other than 1.

Let's examine why:

If x is a multiple of 2, the next largest multiple of 2 is x+2.
If x is a multiple of 3, the next largest multiple of 3 is x+3.

Using this logic, if we go from x to x+1, we get only to the next largest multiple of 1.
So 1 is the only factor common both to x and to x+1.
In other words, x and x+1 are COPRIMES.

Thus:
h(100) and h(100)+1 are COPRIMES. They share no factors other than 1.

h(100) = 2 * 4 * 6 *....* 94 * 96 * 98 * 100
Factoring out 2 from every value above, we get:
h(100) = 2⁵⁰(1 * 2 * 3 *... * 47 * 48 * 49 * 50)

Looking at the set of parentheses on the right, we can see that every prime number between 1 and 50 is a factor of h(100).
Since h(100) and h(100)+1 are coprimes, NONE of the prime numbers between 1 and 50 can be a factor of h(100)+1.

Thus, the smallest prime factor of h(100) + 1 must be greater than 50.

_________________
Mitch Hunt
GMAT Private Tutor
GMATGuruNY@gmail.com
If you find one of my posts helpful, please take a moment to click on the "Thank" icon.
Available for tutoring in NYC and long-distance.

Free GMAT Practice Test How can you improve your test score if you don't know your baseline score? Take a free online practice exam. Get started on achieving your dream score today! Sign up now.

### GMAT/MBA Expert

Brent@GMATPrepNow GMAT Instructor
Joined
08 Dec 2008
Posted:
10757 messages
Followed by:
1212 members
Thanked:
5140 times
GMAT Score:
770
Wed Sep 13, 2017 9:46 am
Quote:
For every positive even integer n, the function h(n) is defined to be the product of all even integers from 2 to n, inclusive. If p is the smallest prime factor of h(100) + 1, the p is

A: Between 2 & 10
B: Between 10 & 20
C: Between 20 & 30
D: Between 30 & 40
E: Greater than 40
Important Concept: If integer k is greater than 1, and k is a factor (divisor) of N, then k is not a divisor of N+1
For example, since 7 is a factor of 350, we know that 7 is not a factor of (350+1)
Similarly, since 8 is a factor of 312, we know that 8 is not a factor of 313

Now let’s examine h(100)
h(100) = (2)(4)(6)(8)….(96)(98)(100)
= (2x1)(2x2)(2x3)(2x4)....(2x48)(2x49)(2x50)
Factor out all of the 2's to get: h(100) = [2^50][(1)(2)(3)(4)….(48)(49)(50)]

Since 2 is in the product of h(100), we know that 2 is a factor of h(100), which means that 2 is not a factor of h(100)+1 (based on the above rule)

Similarly, since 3 is in the product of h(100), we know that 3 is a factor of h(100), which means that 3 is not a factor of h(100)+1 (based on the above rule)

Similarly, since 5 is in the product of h(100), we know that 5 is a factor of h(100), which means that 5 is not a factor of h(100)+1 (based on the above rule)

.
.
.
.
Similarly, since 47 is in the product of h(100), we know that 47 is a factor of h(100), which means that 47 is not a factor of h(100)+1 (based on the above rule)

So, we can see that none of the primes from 2 to 47 can be factors of h(100)+1, which means the smallest prime factor of h(100)+1 must be greater than 47.

Cheers,
Brent

_________________
Brent Hanneson – Founder of GMATPrepNow.com
Use our video course along with

Check out the online reviews of our course

GMAT Prep Now's comprehensive video course can be used in conjunction with Beat The GMAT’s FREE 60-Day Study Guide and reach your target score in 2 months!

### GMAT/MBA Expert

Jeff@TargetTestPrep GMAT Instructor
Joined
09 Apr 2015
Posted:
323 messages
Followed by:
6 members
Thanked:
30 times
Tue Sep 19, 2017 3:06 pm
Quote:
Thanks!

For every positive integer n, the function h(n) is defined to be the product of all the even integers from 2 to n, inclusive. If p is the smallest prime factor of h(100)+1, then p is:
A. Between 2 and 10
B. Between 10 and 20
C. Between 20 and 30
D. Between 30 and 40
E. Greater than 40

We are given that h(n) is defined as the product of all the even integers from 2 to n inclusive. For example, h(8) = 2 x 4 x 6 x 8.

We need to determine the smallest prime factor of h(100) + 1. Before determining the smallest prime factor of h(100) + 1, we must recognize that h(100) and h(100) + 1 are consecutive integers, and consecutive integers will never share the same prime factors.

Thus, h(100) and h(100) + 1 must have different prime factors. However, rather than determining all the prime factors of h(100), let’s determine the largest prime factor of h(100). Since h(100) is the product of the even integers from 2 to 100 inclusive, let’s find the largest prime number such that 2 times that prime number is less than 100.

That prime number is 47, since 2 x 47 = 94, which is less than 100. The next prime after 47 is 53, and 2 x 53 = 106, which is greater than 100.

Therefore, 47 is the largest prime number that is a factor of h(100). In fact, all prime numbers from 2 to 47 are included in the prime factorization of h(100). Since we have mentioned that h(100) + 1 will not have any of the prime factors of h(100), all the prime factors in h(100) + 1, including the smallest one, must be greater than 47. Looking at the answer choices, only choice E can be the correct answer.

_________________
Jeffrey Miller Head of GMAT Instruction

### Best Conversation Starters

1 Vincen 180 topics
2 lheiannie07 61 topics
3 Roland2rule 54 topics
4 ardz24 44 topics
5 VJesus12 14 topics
See More Top Beat The GMAT Members...

### Most Active Experts

1 Brent@GMATPrepNow

GMAT Prep Now Teacher

155 posts
2 Rich.C@EMPOWERgma...

EMPOWERgmat

105 posts
3 GMATGuruNY

The Princeton Review Teacher

101 posts
4 Jay@ManhattanReview

Manhattan Review

82 posts
5 Matt@VeritasPrep

Veritas Prep

80 posts
See More Top Beat The GMAT Experts