• EMPOWERgmat Slider
    1 Hour Free
    BEAT THE GMAT EXCLUSIVE

    Available with Beat the GMAT members only code

    MORE DETAILS
    EMPOWERgmat Slider
  • Varsity Tutors
    Award-winning private GMAT tutoring
    Register now and save up to $200

    Available with Beat the GMAT members only code

    MORE DETAILS
    Varsity Tutors
  • Magoosh
    Magoosh
    Study with Magoosh GMAT prep

    Available with Beat the GMAT members only code

    MORE DETAILS
    Magoosh
  • Kaplan Test Prep
    Free Practice Test & Review
    How would you score if you took the GMAT

    Available with Beat the GMAT members only code

    MORE DETAILS
    Kaplan Test Prep
  • Target Test Prep
    5-Day Free Trial
    5-day free, full-access trial TTP Quant

    Available with Beat the GMAT members only code

    MORE DETAILS
    Target Test Prep
  • Economist Test Prep
    Free Trial & Practice Exam
    BEAT THE GMAT EXCLUSIVE

    Available with Beat the GMAT members only code

    MORE DETAILS
    Economist Test Prep
  • Veritas Prep
    Free Veritas GMAT Class
    Experience Lesson 1 Live Free

    Available with Beat the GMAT members only code

    MORE DETAILS
    Veritas Prep
  • e-gmat Exclusive Offer
    Get 300+ Practice Questions
    25 Video lessons and 6 Webinars for FREE

    Available with Beat the GMAT members only code

    MORE DETAILS
    e-gmat Exclusive Offer
  • PrepScholar GMAT
    5 Day FREE Trial
    Study Smarter, Not Harder

    Available with Beat the GMAT members only code

    MORE DETAILS
    PrepScholar GMAT

Basket ball players

This topic has 2 expert replies and 1 member reply
j_shreyans Legendary Member Default Avatar
Joined
07 Aug 2014
Posted:
510 messages
Followed by:
5 members
Upvotes:
3

Basket ball players

Post Sat Aug 30, 2014 8:52 pm
9 basketball players are trying out to be on a newly formed basketball team. Of these players, 5 will be chosen for the team. If 6 of the players are guards and 3 of the players are forwards, how many different teams of 3 guards and 2 forwards can be chosen?

A)23
B)30
C)42
D)60
E)126

OAD

  • +1 Upvote Post
  • Quote
  • Flag
Need free GMAT or MBA advice from an expert? Register for Beat The GMAT now and post your question in these forums!

Top Member

Post Tue Sep 02, 2014 9:00 pm
j_shreyans wrote:
9 basketball players are trying out to be on a newly formed basketball team. Of these players, 5 will be chosen for the team. If 6 of the players are guards and 3 of the players are forwards, how many different teams of 3 guards and 2 forwards can be chosen?

A)23
B)30
C)42
D)60
E)126

OAD
No. of ways to select 3 Guards out of 6 guards = 6C3 = 20
No. of ways to select 2 forwards out of 3 forwards = 3C2 = 3

Total possible ways = 20 x 3 = 60

Answer: Option D

_________________
Bhoopendra Singh & Sushma Jha - Founder "GMATinsight"
Testimonials e-mail: info@GMATinsight.com I Mobile: +91-9999687183 / +91-9891333772
To register for One-on-One FREE ONLINE DEMO Class Call/e-mail
One-On-One Private tutoring fee - US$40 per hour & for FULL COURSE (38 LIVE Sessions)-US$1000

  • +1 Upvote Post
  • Quote
  • Flag

GMAT/MBA Expert

Post Sun Aug 31, 2014 7:01 am
j_shreyans wrote:
9 basketball players are trying out to be on a newly formed basketball team. Of these players, 5 will be chosen for the team. If 6 of the players are guards and 3 of the players are forwards, how many different teams of 3 guards and 2 forwards can be chosen?

A)23
B)30
C)42
D)60
E)126
Take the task of creating a team and break it into stages.

Stage 1: Select 3 guards from the 6 eligible guards
Since the order in which we select the guards does not matter, we can use combinations.
We can select 3 guards from the 6 eligible guards in 6C3 ways (= 20 ways)
So, we can complete stage 1 in 20 ways

If anyone is interested, we have a free video on calculating combinations (like 6C3) in your head: http://www.gmatprepnow.com/module/gmat-counting?id=789

Stage 2: Select 2 forwards from the 3 eligible forwards
Since the order in which we select the forwards does not matter, we can use combinations.
We can select 2 forwards from the 3 eligible forwards in 3C2 ways (= 3 ways)
So, we can complete stage 2 in 3 ways

By the Fundamental Counting Principle (FCP), we can complete the two stages (and thus create a basketball team) in (20)(3) ways (= 60 ways)

Answer: D
--------------------------

Note: the FCP can be used to solve the MAJORITY of counting questions on the GMAT. For more information about the FCP, watch our free video: http://www.gmatprepnow.com/module/gmat-counting?id=775

Then you can try solving the following questions:

EASY
- http://www.beatthegmat.com/what-should-be-the-answer-t267256.html
- http://www.beatthegmat.com/counting-problem-company-recruitment-t244302.html
- http://www.beatthegmat.com/picking-a-5-digit-code-with-an-odd-middle-digit-t273110.html
- http://www.beatthegmat.com/permutation-combination-simple-one-t257412.html
- http://www.beatthegmat.com/simple-one-t270061.html
- http://www.beatthegmat.com/mouse-pellets-t274303.html


MEDIUM
- http://www.beatthegmat.com/combinatorics-solution-explanation-t273194.html
- http://www.beatthegmat.com/arabian-horses-good-one-t150703.html
- http://www.beatthegmat.com/sub-sets-probability-t273337.html
- http://www.beatthegmat.com/combinatorics-problem-t273180.html
- http://www.beatthegmat.com/digits-numbers-t270127.html
- http://www.beatthegmat.com/doubt-on-separator-method-t271047.html
- http://www.beatthegmat.com/combinatorics-problem-t267079.html


DIFFICULT
- http://www.beatthegmat.com/wonderful-p-c-ques-t271001.html
- http://www.beatthegmat.com/ps-counting-t273659.html
- http://www.beatthegmat.com/permutation-and-combination-t273915.html
- http://www.beatthegmat.com/please-solve-this-real-gmat-quant-question-t271499.html
- http://www.beatthegmat.com/no-two-ladies-sit-together-t275661.html
- http://www.beatthegmat.com/laniera-s-construction-company-is-offering-home-buyers-a-wi-t215764.html

Cheers,
Brent

_________________
Brent Hanneson – Founder of GMATPrepNow.com
Use our video course along with Beat The GMAT's free 60-Day Study Guide

Check out the online reviews of our course
Come see all of our free resources

  • +1 Upvote Post
  • Quote
  • Flag
GMAT Prep Now's comprehensive video course can be used in conjunction with Beat The GMAT’s FREE 60-Day Study Guide and reach your target score in 2 months!

GMAT/MBA Expert

Post Sat Aug 30, 2014 10:28 pm
Hi j_shreyans,

This question does NOT ask us to put players "in order", it asks us for groups of players. That clue points to using the Combination Formula. This question has 2 types of players though (guards and forwards), so we have to use the Combination Formula twice (once for each type of player), then multiply the results.

Guards:
There are 6 guards and we're asked for sets of 3.

6c3 = 6!/(3!3!) = 6(5)(4)(3)(2)(1)/3(2)(1)(3)(2)(1) = 20 different sets of 3 guards

Forwards:
There are 3 forwards and we're asked for groups of 2.

3c2 = 3!/(2!1!) = 3(2)(1)/(2)(1)(1) = 3 different groups of 2 forwards

(20)(3) = 60 possible teams

Final Answer: D

GMAT assassins aren't born, they're made,
Rich

_________________
Contact Rich at Rich.C@empowergmat.com

  • +1 Upvote Post
  • Quote
  • Flag

Best Conversation Starters

1 Roland2rule 174 topics
2 lheiannie07 110 topics
3 ardz24 64 topics
4 LUANDATO 56 topics
5 swerve 46 topics
See More Top Beat The GMAT Members...

Most Active Experts

1 image description Brent@GMATPrepNow

GMAT Prep Now Teacher

150 posts
2 image description Jeff@TargetTestPrep

Target Test Prep

145 posts
3 image description Rich.C@EMPOWERgma...

EMPOWERgmat

116 posts
4 image description GMATGuruNY

The Princeton Review Teacher

103 posts
5 image description Scott@TargetTestPrep

Target Test Prep

98 posts
See More Top Beat The GMAT Experts