A question in Meteor stream

This topic has expert replies
Newbie | Next Rank: 10 Posts
Posts: 1
Joined: Tue Jul 01, 2014 6:24 am

A question in Meteor stream

by Ted1992 » Wed Jul 02, 2014 7:19 am
A meteor stream is composed of dust particles that have been ejected from a parent comet at a variety of velocities. These particles follow the same orbit as the parent comet, but due to their differing velocities they slowly gain on or fall behind the disintegrating comet until a shroud of dust surrounds the entire cometary orbit. Astronomers have hypothesized that a meteor stream should broaden with time as the dust particles' individual orbits are perturbed by planetary gravitational fields. A recent computer-modeling experiment tested this hypothesis by tracking the influence of planetary gravitation over a projected 5,000-year period on the positions of a group of hypothetical dust particles. In the model, the particles were randomly distributed throughout a computer simulation of the orbit of an actual meteor stream, the Geminid. The researcher found, as expected, that the computer model stream broadened with time. Conventional theories, however, predicted that the distribution of particles would be increasingly dense toward the center of a meteor stream. Surprisingly, the computer model meteor stream gradually came to resemble a thick walled, hollow pipe.

Whenever the Earth passes through a meteor stream, a meteor shower occurs. Moving at a little over 1,500,000 miles per day around its orbit, the Earth would take, on average, just over a day to cross the hollow, computer-model Geminid stream if the stream were 5,000 years old. Two brief periods of peak meteor activity during the shower would be observed, one as the Earth entered the thick-walled "pipe" and one as it exited. There is no reason why the Earth should always pass through the stream's exact center, so the time interval between the two bursts of activity would vary from one year to the next.

Has the predicted twin-peaked activity been observed for the actual yearly Geminid meteor shower? The Geminid data between 1970 and 1979 show just such a bifurcation, a secondary burst of meteor activity being clearly visible at an average of 19 hours(1,200,000 miles)after the first burst. The time intervals between the bursts suggest the actual Geminid stream is about 3000 years old.

It can be inferred from the passage that which of the following would most probably be observed during the Earth's passage through a meteor stream if the conventional theories mentioned in highlight text were correct?
A Meteor activity would gradually increase to a single, intense peak, and then gradually decline.
B Meteor activity would be steady throughout the period of the meteor shower.
C Meteor activity would rise to a peak at the beginning and at the end of the meteor shower.
D Random bursts of very high meteor activity would be interspersed with periods of very little activity.
E In years in which the Earth passed through only the outer areas of a meteor stream, meteor activity would be absent.

Can anybody tell me why A is correct? I just dont understand the part and then gradually decline in choice A, since i cant find any relevant info in the passage.

User avatar
Master | Next Rank: 500 Posts
Posts: 116
Joined: Wed Mar 14, 2012 1:02 pm
Thanked: 20 times
Followed by:11 members
GMAT Score:760

by mcdesty » Fri Jul 11, 2014 5:38 am
Ted1992 wrote:A meteor stream is composed of dust particles that have been ejected from a parent comet at a variety of velocities. These particles follow the same orbit as the parent comet, but due to their differing velocities they slowly gain on or fall behind the disintegrating comet until a shroud of dust surrounds the entire cometary orbit. Astronomers have hypothesized that a meteor stream should broaden with time as the dust particles' individual orbits are perturbed by planetary gravitational fields. A recent computer-modeling experiment tested this hypothesis by tracking the influence of planetary gravitation over a projected 5,000-year period on the positions of a group of hypothetical dust particles. In the model, the particles were randomly distributed throughout a computer simulation of the orbit of an actual meteor stream, the Geminid. The researcher found, as expected, that the computer model stream broadened with time. Conventional theories, however, predicted that the distribution of particles would be increasingly dense toward the center of a meteor stream. Surprisingly, the computer model meteor stream gradually came to resemble a thick walled, hollow pipe.

Whenever the Earth passes through a meteor stream, a meteor shower occurs. Moving at a little over 1,500,000 miles per day around its orbit, the Earth would take, on average, just over a day to cross the hollow, computer-model Geminid stream if the stream were 5,000 years old. Two brief periods of peak meteor activity during the shower would be observed, one as the Earth entered the thick-walled "pipe" and one as it exited. There is no reason why the Earth should always pass through the stream's exact center, so the time interval between the two bursts of activity would vary from one year to the next.

Has the predicted twin-peaked activity been observed for the actual yearly Geminid meteor shower? The Geminid data between 1970 and 1979 show just such a bifurcation, a secondary burst of meteor activity being clearly visible at an average of 19 hours(1,200,000 miles)after the first burst. The time intervals between the bursts suggest the actual Geminid stream is about 3000 years old.

It can be inferred from the passage that which of the following would most probably be observed during the Earth's passage through a meteor stream if the conventional theories mentioned in highlight text were correct?
A Meteor activity would gradually increase to a single, intense peak, and then gradually decline.
B Meteor activity would be steady throughout the period of the meteor shower.
C Meteor activity would rise to a peak at the beginning and at the end of the meteor shower.
D Random bursts of very high meteor activity would be interspersed with periods of very little activity.
E In years in which the Earth passed through only the outer areas of a meteor stream, meteor activity would be absent.

Can anybody tell me why A is correct? I just dont understand the part and then gradually decline in choice A, since i cant find any relevant info in the passage.
See highlighted portions of passage. Let me know if you still have your question.
See image for what my scratch paper looked like.( Yes!It took me 4 minutes to read and draw a picture)
Attachments
Meteor.jpg